【題目】極坐標(biāo)與參數(shù)方程

在直角坐標(biāo)系,直線的參數(shù)方程是為參數(shù)).在以為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系中,曲線 .

(1)當(dāng), 時(shí),判斷直線與曲線的位置關(guān)系;

(2)當(dāng)時(shí),若直線與曲相交于, 兩點(diǎn),設(shè),且,求直線的傾斜角.

【答案】(1)直線與曲線相交.(2).

【解析】試題分析:

(1)圓心到直線的距離小于半徑,則直線與曲線相交.

(2)寫出直線參數(shù)方程的標(biāo)準(zhǔn)形式,與圓的方程聯(lián)立,利用參數(shù)的幾何意義整理可得直線的傾斜角.

試題解析:

解:(1)由,得,又

得曲線的普通方程為,

所以曲線是以為圓心,2為半徑的圓,

由直線的參數(shù)方程為為參數(shù)),

得直線的直線坐標(biāo)方程為.

由圓心到直線的距離,

故直線與曲線相交.

(2)直線為經(jīng)過(guò)點(diǎn)傾斜角為的直線,

代入,整理得,

,

設(shè), 對(duì)應(yīng)的參數(shù)分別為,則,

所以異號(hào).則,

所以,又,

所以直線的傾斜角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前項(xiàng)n和為Sn , 且3Sn=4an﹣4.又?jǐn)?shù)列{bn}滿足bn=log2a1+log2a2+…+log2an
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)若 ,求使得不等式 恒成立的實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xm ,且f(3)=
(1)求函數(shù)f(x)的解析式,并判斷函數(shù)f(x)的奇偶性.
(2)證明函數(shù)f(x)在(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(Ⅰ)命題“ ”為假命題,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若“x2+2x﹣8<0”是“x﹣m>0”的充分不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】目前我國(guó)城市的空氣污染越來(lái)越嚴(yán)重,空氣質(zhì)量指數(shù)一直居高不下,對(duì)人體的呼吸系統(tǒng)造成了嚴(yán)重的影響,現(xiàn)調(diào)查了某城市500名居民的工作場(chǎng)所和呼吸系統(tǒng)健康,得到列聯(lián)表如下:

室外工作

室內(nèi)工作

合計(jì)

有呼吸系統(tǒng)疾病

150

無(wú)呼吸系統(tǒng)疾病

100

合計(jì)

200

(Ⅰ)請(qǐng)把列聯(lián)表補(bǔ)充完整;

(Ⅱ)你是否有95%的把握認(rèn)為感染呼吸系統(tǒng)疾病與工作場(chǎng)所有關(guān);

(Ⅲ)現(xiàn)采用分層抽樣從室內(nèi)工作的居民中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中隨機(jī)抽取2人,求2人都有呼吸系統(tǒng)疾病的概率.

參考公式與臨界表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E、F為棱AD、AB的中點(diǎn).
(Ⅰ)求證:EF∥平面CB1D1;
(Ⅱ)求證:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c分別為△ABC內(nèi)角A,B,C的對(duì)邊,且
(1)求A的值.
(2)若a=2,△ABC的面積為 ,求b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的不等式4x+x﹣a≤ 在x∈[0, ]上恒成立,則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,﹣ ]
B.(0,1]
C.[﹣ ,1]
D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】雙曲線 的右焦點(diǎn)為F(2,0),設(shè)A、B為雙曲線上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),AF的中點(diǎn)為M,BF的中點(diǎn)為N,若原點(diǎn)O在以線段MN為直徑的圓上,直線AB的斜率為 ,則雙曲線的離心率為(
A.4
B.2
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案