【題目】2017年某市有2萬多文科考生參加高考,除去成績(jī)?yōu)?/span>670分(含670分)以上的3人與成績(jī)?yōu)?/span>350分(不含350分)以下的3836人,還有約1.9萬文科考生的成績(jī)集中在內(nèi),其成績(jī)的頻率分布如下表所示:

分?jǐn)?shù)段

頻率

分?jǐn)?shù)段

頻率

(1)試估計(jì)該次高考成績(jī)?cè)?/span>內(nèi)文科考生的平均分(精確到);

(2)一考生填報(bào)志愿后,得知另外有4名同分?jǐn)?shù)考生也填報(bào)了該志愿.若該志愿計(jì)劃錄取3人,并在同分?jǐn)?shù)考生中隨機(jī)錄取,求該考生不被該志愿錄取的概率.

【答案】(1);(2)

【解析】

(1)根據(jù)頻數(shù)與頻率,可求得考生的平均分。

2)列出所有基本事件,并根據(jù)基本事件找到不被錄取的情況,即可求得該考生不被錄取的概率。

(1)成績(jī)?cè)?/span>內(nèi)的平均分為

(分).

(2)該考生記為,另外4名考生分別記為、、、

則基本事件有:,,,,,,,所以基本事件共10種,不被錄取共4種,

故概率

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,.

(Ⅰ)求;

(Ⅱ)求單調(diào)區(qū)間;

(Ⅲ)若不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次測(cè)量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,8686,88,88,88,88.B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對(duì)應(yīng)相同的是

A. 眾數(shù) B. 平均數(shù) C. 中位數(shù) D. 標(biāo)準(zhǔn)差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù)的定義域?yàn)?/span>,

1)求實(shí)數(shù)的值,使函數(shù)為奇函數(shù);

2)在(1)的條件下,令,求使方程有解的實(shí)數(shù)的取值范圍;

3)在(1)的條件下,不等式對(duì)于任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.

(1)求曲線的普通方程;

(2)若與曲線相切,且與坐標(biāo)軸交于兩點(diǎn),求以為直徑的圓的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的偶函數(shù)fx),當(dāng)x≥0時(shí),fx)=(x121的圖象如圖所示,

1)請(qǐng)補(bǔ)全函數(shù)fx)的圖象并寫出它的單調(diào)區(qū)間.

2)根據(jù)圖形寫出函數(shù)fx)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,已知直線的參數(shù)方程是 (m>0,t為參數(shù)),曲線的極坐標(biāo)方程為

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若直線軸交于點(diǎn),與曲線交于點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等腰梯形ABCD中,ABDC,AB2,BC1,∠ABC60°.動(dòng)點(diǎn)EF分別在線段BCDC上,且

1)當(dāng)λ,求||;

2)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是偶函數(shù)的導(dǎo)函數(shù)在區(qū)間上的唯一零點(diǎn)為2,并且當(dāng)時(shí),,則使得成立的的取值范圍是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案