【題目】如圖,四棱錐P-ABCD底面為正方形,PD⊥平面ABCD,PD=AD,點M為線段PA上任意一點(不含端點),點N在線段BD上,且PM=DN.
(1)求證:直線MN∥平面PCD.
(2)若點M為線段PA的中點,求直線PB與平面AMN所成角的余弦值.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,過點向圓引兩條切線,,切點為,,若點的坐標為,則直線的方程為____________;若為直線上一動點,則直線經(jīng)過定點__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知坐標平面上動點與兩個定點, ,且.
(1)求點的軌跡方程,并說明軌跡是什么圖形;
(2)記(1)中軌跡為,過點的直線被所截得的線段長度為8,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,、是雙曲線的兩個焦點,一條直線與雙曲線的右支相切,且分別交兩條漸近線于A、B.又設O為坐標原點,求證: (1); ⑵、、A、B四點在同一個圓上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是圓上的動點,點是在軸上的投影,且.
(1)當在圓上運動時,求點的軌跡的方程;
(2)求過點(1,0),傾斜角為的直線被所截線段的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在上單調(diào),且函數(shù)的圖象關于直線對稱,若數(shù)列是公差不為0的等差數(shù)列,且,則的前100項的和為( )
A. 300B. 100C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知互不重合的直線,互不重合的平面,給出下列四個命題,正確命題的個數(shù)是
①若 , ,,則
②若,,則
③若,,,則
④若 , ,則//
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題:①“”是“存在,使得成立”的充分不必要條件;②“”是“存在,使得成立”的必要條件;③“”是“不等式對一切恒成立”的充要條件. 其中所以真命題的序號是
A.③B.②③C.①②D.①③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點在橢圓 上,過點的直線的方程為.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若直線與軸、軸分別相交于兩點,試求面積的最小值;
(Ⅲ)設橢圓的左、右焦點分別為,,點與點關于直線對稱,求證:點三點共線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com