【題目】在△ABC中,角A,B,C對應的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大;
(2)若△ABC的面積S=5 ,b=5,求sinBsinC的值.

【答案】
(1)解:由cos2A﹣3cos(B+C)=1,得2cos2A+3cosA﹣2=0,

即(2cosA﹣1)(cosA+2)=0,解得 (舍去).

因為0<A<π,所以


(2)解:由S= = = ,得到bc=20.又b=5,解得c=4.

由余弦定理得a2=b2+c2﹣2bccosA=25+16﹣20=21,故

又由正弦定理得


【解析】(1)利用倍角公式和誘導公式即可得出;(2)由三角形的面積公式 即可得到bc=20.又b=5,解得c=4.由余弦定理得a2=b2+c2﹣2bccosA=25+16﹣20=21,即可得出a.又由正弦定理得即可得到 即可得出.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系,已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線交于兩點.

(1)求直線l的普通方程和曲線的直角坐標方程;

(2)已知點的極坐標為,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是函數(shù)的導函數(shù)的圖象,給出下列命題:

①-2是函數(shù)的極值點;

是函數(shù)的極值點;

處取得極大值;

④函數(shù)在區(qū)間上單調遞增.則正確命題的序號是

A. ①③ B. ②④ C. ②③ D. ①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系,已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線交于兩點.

(1)求直線l的普通方程和曲線的直角坐標方程;

(2)已知點的極坐標為,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)求不等式的解集;

(2)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,點是直線上的一動點,過點作圓M的切線、,切點為、

)當切線PA的長度為時,求點的坐標;

)若的外接圓為圓,試問:當運動時,圓是否過定點?若存在,求出所有的定點的坐標;若不存在,說明理由;

)求線段長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設每天從甲地去乙地的旅客人數(shù)X是服從正態(tài)分布N(800,502)的隨機變量.記一天中從甲地去乙地的旅客人數(shù)不超過900的概率為p0
(1)求p0的值;
(參考數(shù)據(jù):若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.)
(2)某客運公司用A,B兩種型號的車輛承擔甲、乙兩地間的長途客運業(yè)務,每車每天往返一次,A,B兩種車輛的載客量分別為36人和60人,從甲地去乙地的營運成本分別為1600元/輛和2400元/輛.公司擬組建一個不超過21輛車的客運車隊,并要求B型車不多于A型車7輛.若每天要以不小于p0的概率運完從甲地去乙地的旅客,且使公司從甲地去乙地的營運成本最小,那么應配備A型車、B型車各多少輛?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在銳角中,,,分別為內角,所對的邊,且滿足

(Ⅰ)求角的大;

(Ⅱ)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,丄平面,,,.

(1)證明;

(2)求二面角的正弦值;

(3)設為棱上的點,滿足異面直線所成的角為,求的長.

查看答案和解析>>

同步練習冊答案