【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線交于兩點.
(1)求直線l的普通方程和曲線的直角坐標方程;
(2)已知點的極坐標為,求的值.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0),e= ,其中F是橢圓的右焦點,焦距為2,直線l與橢圓C交于點A、B,點A,B的中點橫坐標為 ,且 =λ (其中λ>1).
(1)求橢圓C的標準方程;
(2)求實數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A(0,3),直線l:y=2x﹣4.設(shè)圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x﹣1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使MA=2MO,求圓心C的橫坐標a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的定義域為,部分對應(yīng)值如下表,又知的導函數(shù)的圖象如下圖所示:
-1 | 0 | 4 | 5 | |
1 | 2 | 2 | 1 |
則下列關(guān)于的命題:
①為函數(shù)的一個極大值點;
②函數(shù)的極小值點為2;
③函數(shù)在上是減函數(shù);
④如果當時,的最大值是2,那么的最大值為4;
⑤當時,函數(shù)有4個零點.
其中正確命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了更好地服務(wù)民眾,某共享單車公司通過向共享單車用戶隨機派送每張面額為0元,1元,2元的三種騎行券.用戶每次使用掃碼用車后,都可獲得一張騎行券.用戶騎行一次獲得1元獎券、獲得2元獎券的概率分別是0.5、0.2,且各次獲取騎行券的結(jié)果相互獨立.
(I)求用戶騎行一次獲得0元獎券的概率;
(II)若某用戶一天使用了兩次該公司的共享單車,記該用戶當天獲得的騎行券面額之和為,求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年6月14日,世界杯足球賽在俄羅斯拉開帷幕.通過隨機調(diào)查某小區(qū)100名性別不同的居民是否觀看世界杯比賽,得到以下列聯(lián)表:
觀看世界杯 | 不觀看世界杯 | 總計 | |
男 | 40 | 20 | 60 |
女 | 15 | 25 | 40 |
總計 | 55 | 45 | 100 |
經(jīng)計算的觀測值.
附表:
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參照附表,所得結(jié)論正確的是( )
A. 有以上的把握認為“該小區(qū)居民是否觀看世界杯與性別有關(guān)”
B. 有以上的把握認為“該小區(qū)居民是否觀看世界杯與性別無關(guān)”
C. 在犯錯誤的概率不超過0.005的前提下,認為“該小區(qū)居民是否觀看世界杯與性別有關(guān)”
D. 在犯錯誤的概率不超過0.001的前提下,認為“該小區(qū)居民是否觀看世界杯與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面積S=5 ,b=5,求sinBsinC的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com