7.已知雙曲線C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1的離心率為$\frac{{\sqrt{6}}}{2}$.

分析 雙曲線C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1中a=2,b=$\sqrt{2}$,c=$\sqrt{6}$,即可求出雙曲線的離心率.

解答 解:雙曲線C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1中a=2,b=$\sqrt{2}$,c=$\sqrt{6}$,
∴e=$\frac{c}{a}$=$\frac{{\sqrt{6}}}{2}$,
故答案為$\frac{{\sqrt{6}}}{2}$.

點(diǎn)評(píng) 本題考查雙曲線的離心率,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在△ABC中,能判斷三角形是銳角三角形的條件是(  )
A.sinA+sinB=0.2B.$\overrightarrow{AB}$•$\overrightarrow{BC}$<0
C.b=3,c=3$\sqrt{3}$,B=30°D.tanA+tanB+tanC>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)y=3sin(2x-$\frac{π}{6}$)的單調(diào)增區(qū)間是[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.由直線3x-4y+1=0上的一點(diǎn)向圓C:x2+y2-6x+8=0引切線,則切線長(zhǎng)的最小值為( 。
A.1B.2C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知f(x)=$\left\{{\begin{array}{l}{1-{x^2}},x≤1\\{{x^2}-2x-2},x>1\end{array}}\right.$,則$f[{\frac{1}{f(2)}}]$的值是( 。
A.$\frac{1}{16}$B.$-\frac{3}{4}$C.$\frac{3}{4}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若0<α<β<π,則α-β的范圍是(-π,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,$AB=BC=CA=\sqrt{3}$,$A{A_1}=2\sqrt{2}$,則該三棱柱外接球的表面積等于12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)$f(x)=\left\{\begin{array}{l}|{l}o{g_2}x|,0<x≤4\\-x+6,x>4\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),則abc的取值范圍是( 。
A.(0,1)B.(1,2)C.(1,4)D.(4,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知(1-x-2y)2的展開(kāi)式中不含x項(xiàng)的系數(shù)和為m,則${∫}_{1}^{2}$xmdx=$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案