【題目】設(shè)橢圓 )的左右焦點(diǎn)分別為, ,下頂點(diǎn)為,直線的方程為.

(Ⅰ)求橢圓的離心率;

(Ⅱ)設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn), 到直線的距離為,且三角形的面積為.

(1)求橢圓的方程;

(2)若斜率為的直線與橢圓相切,過焦點(diǎn) 分別作, ,垂足分別為, ,求的最大值.

【答案】(1)(2)4

【解析】試題分析:(Ⅰ) 由直線斜率為 可得 ,從而可得結(jié)果;(Ⅱ)(1)先求得 點(diǎn)坐標(biāo),根據(jù)三角形面積可得 的值,從而可得橢圓方程,(2) 設(shè)直線 代入橢圓的方程中,

,判別式為零,及點(diǎn)到直線的距離公式可將表示為 的函數(shù),再利用基本不等式求解即可.

試題解析:(Ⅰ)由已知,則.

,

(Ⅱ)(1)設(shè)點(diǎn),于是

所以

無解;

.

又因?yàn)槿切?/span>面積,所以,

于是,橢圓的方程為.

(2)設(shè)直線 代入橢圓的方程中,

由已知,即

同時,

①當(dāng)時,

所以

當(dāng)且僅當(dāng)時等號成立

時, ,因此

②當(dāng)時,四邊形為矩形

此時

綜上①②可知, 的最大值為4.

【方法點(diǎn)晴】本題主要考查待定系數(shù)法求橢圓方程和最值問題,屬于難題.解決圓錐曲線中的最值問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將圓錐曲線中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)法以及均值不等式法,本題(Ⅱ)就是用的這種思路,利用均值不等式法的最大值的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)兩個非零向量 不共線.
(1)如果 = + =2 +8 , =3 ﹣3 ,求證:A、B、D三點(diǎn)共線;
(2)若| |=2,| |=3, 的夾角為60°,是否存在實(shí)數(shù)m,使得m + 垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的短軸長為,右焦點(diǎn)為,點(diǎn)是橢圓上異于左、右頂點(diǎn)的一點(diǎn).

(1)求橢圓的方程;

(2)若直線與直線交于點(diǎn),線段的中點(diǎn)為,證明:點(diǎn)關(guān)于直線的對稱點(diǎn)在直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=Asin(ωx+φ)在一個周期內(nèi)的圖象如圖,此函數(shù)的解析式為(

A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)(xk)ex,

(1)f(x)的單調(diào)區(qū)間;

(2)f(x)在區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(2x﹣ ),x∈R.

(1)在給定的平面直角坐標(biāo)系中,畫函數(shù)f(x)=2sin(2x﹣ ),x∈[0,π]的簡圖;
(2)求f(x)=2sin(2x﹣ ),x∈[﹣π,0]的單調(diào)增區(qū)間;
(3)函數(shù)g(x)=2cos2x的圖象只經(jīng)過怎樣的平移變換就可得到f(x)=2sin(2x﹣ ),x∈R的圖象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)ax21(a>0)g(x)x3bx.

(1)若曲線yf(x)與曲線yg(x)在它們的交點(diǎn)(1,c)處具有公共切線a,b的值;

(2)當(dāng)a3,b=-9若函數(shù)f(x)g(x)在區(qū)間[k,2]上的最大值為28,k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于維向量,若對任意均有,則稱向量. 對于兩個向量定義.

(1)若, 求的值;

(2)現(xiàn)有一個向量序列: 且滿足: ,求證:該序列中不存在向量.

(3) 現(xiàn)有一個向量序列: 且滿足: ,若存在正整數(shù)使得向量序列中的項(xiàng),求出所有的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),橢圓 的離心率為是橢圓的右焦點(diǎn),直線的斜率為為坐標(biāo)原點(diǎn).

(1)求的方程;

(2)設(shè)過點(diǎn)的動直線相交于兩點(diǎn),當(dāng)的面積最大時,求的方程.

查看答案和解析>>

同步練習(xí)冊答案