8.若2x-3<m的充分不必要條件是x(x-3)<0,則實數(shù)m的取值范圍是[3,+∞).

分析 分別求出不等式的解集,結合充分不必要條件,可得A?B,解出即可.

解答 解:由x(x-3)<0,解得:0<x<3,即解集A=(0,3)
由2x-3<m的,解得,x<$\frac{m+3}{2}$,即解集B=(-∞,$\frac{m+3}{2}$),
若2x-3<m的充分不必要條件是x(x-3)<0,
∴A?B,
∴$\frac{m+3}{2}$≥3,
解的m≥3,
則實數(shù)a的取值范圍是[3,+∞),
故答案為:[3,+∞).

點評 本題考查了一元二次不等式的解法、充分必要條件的判定與應用,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

18.某高三年級有500名同學,將他們的身高(單位:cm)數(shù)據(jù)繪制成頻率分布直方圖(如圖),若在身高[160,170),[170,180),[180,190]三組內(nèi)的學生中,用分層抽樣的方法選取30人參加一項活動,則從身高在[160,170)內(nèi)的學生中選取的人數(shù)應為15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列函數(shù)中,既是偶函數(shù)又在(-∞,0)上單調(diào)遞增的函數(shù)是( 。
A.y=x2B.y=exC.y=log0.5|x|D.y=sinx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售,如果當天賣不完,剩下的玫瑰花作垃圾處理.花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n 14  15  16  17  18  1920
頻數(shù)1020  16  16  15  13 10
以100天記錄的各需求量的頻數(shù)作為各需求量發(fā)生的概率.
(1)若花店一天購進16枝玫瑰花,X表示當天的利潤(單位:元),求X的分布列、數(shù)學期望及方差;
(2)若花店計劃一天購進16枝或17枝玫瑰花,你認為應購進16枝還是17枝?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.有下列四個命題:
①“若xy=1,則x,y互為倒數(shù)”的逆命題;
②“相似三角形的周長相等”的否命題;
③“若b≤-1,則方程x2-2bx+b2+b=0有實根”的逆否命題;
④“若A∪B=B,則A?B”的逆否命題.
其中真命題是①③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設函數(shù)f(x)=$\frac{2^x}{{1+{2^x}}}-\frac{1}{2}$,[x]表示不超過x的最大整數(shù),則函數(shù)y=[f(x)]的值域為( 。
A.{0}B.{-1,0}C.{-1,0,1}D.{-2,0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,在三棱柱ABC-A1B1C1中,側面ABB1A1是矩形,∠BAC=90°,AA1⊥BC,AA1=AC=2AB=4,且BC1⊥A1C
(1)求證:平面ABC1⊥平面A1ACC1
(2)設D是A1C1的中點,判斷并證明在線段BB1上是否存在點E,使DE∥平面ABC1,若存在,求點E到平面ABC1的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設函數(shù)$f(x)=\frac{1}{2}+{log_2}\frac{x}{1-x}$,${S_n}=\sum_{i=1}^{n-1}{f(\frac{i}{n})}$,其中n∈N*,且n≥2,則S2014=$\frac{2013}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在△ABC中,D為線段BC上一點(不能與端點重合),∠ACB=$\frac{π}{3},AB=\sqrt{7}$,AC=3,BD=1,則AD=$\sqrt{7}$.

查看答案和解析>>

同步練習冊答案