精英家教網 > 高中數學 > 題目詳情

【題目】在圖所示的五面體中,面ABCD為直角梯形,,平面平面ABCD,,是邊長為2的正三角形.

證明:平面ACF;

若點P在線段EF上,且二面角的余弦值為,求的值.

【答案】(1)詳見解析;(2)

【解析】

建立空間直角坐標系,利用向量法能證明平面ACF.求出平面BCF的一個法向量和平面PBC的一個法向量,利用向量法能求出結果.

解:連結BE、AC、AF,取AD的中點O,連結OE,

依題意知,平面平面ABCD,

平面ADE,平面平面,

平面ABCD,

以O為原點,OA為x軸,OE為z軸,過O作AB的平行線為y軸,建立空間直角坐標系,

0,,1,,2,,0,,4,

,2,,4,,

,

,,

,平面ACF.

1,,3,

設平面BCF的一個法向量y,,

,取,得2,,

,,,4,,

,

1,,,

設平面PBC的一個法向量y,

,取,得2,

二面角的余弦值為,

,

解得,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知直線 ,若存在實數使得一條曲線與直線有兩個不同的交點,且以這兩個交點為端點的線段長度恰好等于,則稱此曲線為直線的“絕對曲線”.下面給出的四條曲線方程:

;②;③;④.

其中直線的“絕對曲線”的條數為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在邊長為2的正方形中,分別為的中點,的中點,沿將正方形折起,使重合于點,在構成的四面體中,下列結論錯誤的是

A. 平面

B. 直線與平面所成角的正切值為

C. 四面體的內切球表面積為

D. 異面直線所成角的余弦值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱柱中,側面的菱形, .

(1)證明:平面平面.

(2)若,直線與平面所成的角為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=(2x-4)exa(x+2)2(x>0,aR,e是自然對數的底數).

(1)f(x)(0,+∞)上的單調遞增函數,求實數a的取值范圍;

(2)a時,證明:函數f(x)有最小值,并求函數f(x)的最小值的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】0<a<1,則函數f(x)loga||( )

A.(,-1)(1,+∞)上單調遞減,在(1,1)上單調遞增

B.(,-1)(1,+∞)上單調遞增,在(1,1)上單調遞減

C.(,-1)(1,+∞)上單調遞增,在(1,1)上單調遞增

D.(,-1)(1,+∞)上單調遞減,在(1,1)上單調遞減

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在矩形ABCD中,AB=1,AD=2,動點P在以點C為圓心且與BD相切的圓上.若λμ,則λμ的最大值為(  )

A. 3 B. 2

C. D. 2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】光對物體的照度與光的強度成正比,比例系數為,與光源距離的平方成反比,比例系數為均為正常數如圖,強度分別為8,1的兩個光源A,B之間的距離為10,物體P在連結兩光源的線段AB不含A,若物體P到光源A的距離為x

試將物體P受到A,B兩光源的總照度y表示為x的函數,并指明其定義域;

當物體P在線段AB上何處時,可使物體P受到AB兩光源的總照度最?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4—5:不等式選講

已知函數

1)當時,解不等式;

2)若存在實數,使得不等式成立,求實的取值范圍.

查看答案和解析>>

同步練習冊答案