【題目】已知橢圓的右焦點為,過的直線交于,兩點,點的坐標為.當軸時,的面積為.

(1)求橢圓的標準方程;

(2)設(shè)直線、的斜率分別為、,證明:.

【答案】(1);(2)見解析

【解析】

1)由已知條件得b2a21,利用通徑公式得出|AB|的表達式,再由△ABM的面積得出有關(guān)a的方程,求出a的值,可得出橢圓C的標準方程;

2)對直線lx軸垂直、與y軸垂直以及與斜率存在且不為零三種情況討論.在前兩種情況下可直接進行驗證;在第三種情況下,設(shè)直線l的方程為ykx1)(k0),將直線l的方程與橢圓方程聯(lián)立,列出韋達定理,利用斜率公式并代入韋達定理,通過化簡計算得出結(jié)論成立.

1)依題意得,即,

所以當時,解得,當軸時,,

因為,所以,解得,

所以橢圓的標準方程為.

(2)當軸重合時,,滿足條件;當軸垂直時,滿足條件,

軸不重合且不垂直時,設(shè),,,

代入,得,

,,

因為 ,

,

所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為,對任意、都有,當時,,.

1)求;

2)證明:上單調(diào)遞減;

3)解不等式:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益滿足函數(shù): ,其中是儀器的月產(chǎn)量.(注:總收益=總成本+利潤)

(1)將利潤表示為月產(chǎn)量的函數(shù);

(2)當月產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司訂購了一批樹苗,為了檢測這批樹苗是否合格,從中隨機抽測 株樹苗的高度,經(jīng)數(shù)據(jù)處理得到如圖的頻率分布直方圖,起中最高的 株樹苗高度的莖葉圖如圖所示,以這 株樹苗的高度的頻率估計整批樹苗高度的概率.

(1)求這批樹苗的高度高于 米的概率,并求圖19-1中, , , 的值;

(2)若從這批樹苗中隨機選取 株,記 為高度在 的樹苗數(shù)列,求 的分布列和數(shù)學期望.

(3)若變量 滿足,則稱變量 滿足近似于正態(tài)分布 的概率分布.如果這批樹苗的高度滿足近似于正態(tài)分布 的概率分布,則認為這批樹苗是合格的,將順利獲得簽收;否則,公司將拒絕簽收.試問,該批樹苗能否被簽收?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)為偶函數(shù),求實數(shù)的值;

2)若,求函數(shù)的單調(diào)遞減區(qū)間;

3)當時,若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了研究某種微生物的生長規(guī)律,研究小組在實驗室對該種微生物進行培育實驗.前三天觀測的該微生物的群落單位數(shù)量分別為12,16,24.根據(jù)實驗數(shù)據(jù),用y表示第天的群落單位數(shù)量,某研究員提出了兩種函數(shù)模型;;,其中a,b,c,p,q,r都是常數(shù).

1)根據(jù)實驗數(shù)據(jù),分別求出這兩種函數(shù)模型的解析式;

2)若第4天和第5天觀測的群落單位數(shù)量分別為4072,請從這兩個函數(shù)模型中選出更合適的一個,并計算從第幾天開始該微生物群落的單位數(shù)量超過1000

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)圖象如圖,的導函數(shù),則下列數(shù)值排序正確的是( )

A.

B.

C.

D.

【答案】C

【解析】結(jié)合函數(shù)的圖像可知過點的切線的傾斜角最大,過點的切線的傾斜角最小,又因為點的切線的斜率,點的切線斜率,直線的斜率,故,應(yīng)選答案C。

點睛:本題旨在考查導數(shù)的幾何意義與函數(shù)的單調(diào)性等基礎(chǔ)知識的綜合運用。求解時充分借助題設(shè)中所提供的函數(shù)圖形的直觀,數(shù)形結(jié)合進行解答。先將經(jīng)過兩切點的直線繞點逆時針旋轉(zhuǎn)到與函數(shù)的圖像相切,再將經(jīng)過兩切點的直線繞點順時針旋轉(zhuǎn)到與函數(shù)的圖像相切,這個過程很容易發(fā)現(xiàn),從而將問題化為直觀圖形的問題來求解。

型】單選題
結(jié)束】
9

【題目】已知、為雙曲線的左、右焦點,點上,,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2x.

(1)判斷函數(shù)的奇偶性,并證明;

(2)用單調(diào)性的定義證明函數(shù)f(x)=2x在(0,+∞)上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為實數(shù),數(shù)列滿足,.

(Ⅰ)當時,分別寫出數(shù)列的前5項;

(Ⅱ)證明:當時,存在正整數(shù),使得;

(Ⅲ)當時,是否存在實數(shù)及正整數(shù),使得數(shù)列的前項和?若存在,求出實數(shù)及正整數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案