17.如圖,在四棱錐S-ABCD中,底面ABCD是直角梯形,側(cè)棱SA⊥底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1.M是棱SB的中點.
(Ⅰ)求證:AM∥平面SCD;
(Ⅱ)求證:平面SDC⊥平面SBC.

分析 (Ⅰ)取SC的中點為E,連結(jié)ME,ED,證明ADEM為平行四邊形,從而證明AM∥平面SCD;
(Ⅱ)證明:AM⊥平面SBC,利用AM∥ED,可得ED⊥平面SBC,即可證明平面SDC⊥平面SBC.

解答 證明:(Ⅰ)如圖,取SC的中點為E,連結(jié)ME,ED
在△SBC中,M、E分別是SB、SC的中點 
∴ME∥BC,且ME=$\frac{1}{2}$BC
又BC=2,AD=1,且AD∥BC
∴ME∥AD,且ME=AD
∴ADEM為平行四邊形
故AM∥ED.
又ED?平面SCD,AM?平面SCD
∴AM∥平面SCD.
(Ⅱ)∵CB⊥AB,CB⊥SA,AB∩SA=A,
∴CB⊥平面SAB,
∵AM?平面SAB,∴CB⊥AM,
∵SA=AB,M是棱SB的中點,
∴AM⊥SB,
∵CB∩SB=B,∴AM⊥平面SBC,
∵AM∥ED,∴ED⊥平面SBC,
∵ED?平面SDC,
∴平面SDC⊥平面SBC.

點評 本題考查了空間中的平行與垂直,同時涉及了轉(zhuǎn)化的思想,綜合性較大,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.下列函數(shù)中,在區(qū)間(0,+∞)上單調(diào)遞增且為偶函數(shù)的是( 。
A.y=x3B.y=2x
C.y=[x](不超過x的最大整數(shù))D.y=|x|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.函數(shù)$y=sin2x-\sqrt{3}cos2x$的圖象可由函數(shù)$y=sin2x+\sqrt{3}cos2x$的圖象至少向右平移( 。﹤單位長度得到.
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD=2PD=2,PD⊥面ABCD.
(I)證明:PA⊥BD;
(II)若PD=AD,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在△ABC中,角A,B,C的對邊分別為a,b,c,向量$\overrightarrow m=(a+b,sinA-sinC)$,向量$\overrightarrow n=(c,sinA-sinB)$,且$\overrightarrow m∥\overrightarrow n$.
(1)求角B的大小;
(2)設BC的中點為D,且AD=$\sqrt{3}$,求a+2c的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.畢業(yè)臨近,5位同學按順序站成一排合影留念,其中2位女同學,3位男同學,則女生甲不站兩端,3位男同學有且只有2位相鄰的排法總數(shù)有(  )種.
A.24B.36C.48D.60

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.運行如圖所示的程序框圖,則輸出的結(jié)果S=( 。
A.1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{99}$B.$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{99}$C.1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{101}$D.$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{101}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若圓x2+(y-1)2=3截直線y=kx-1所得的弦長為2,則斜率k的值是(  )
A.$±\sqrt{2}$B.$±\sqrt{3}$C.±1D.±2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.在直角梯形ABCD中,∠A=90°,AD∥BC,BC=2AD,△ABD面積為1,若$\overrightarrow{DE}$=$\frac{1}{2}$$\overrightarrow{EC}$,BE⊥CD,則$\overrightarrow{DA}$•$\overrightarrow{DC}$=$-\sqrt{2}$.

查看答案和解析>>

同步練習冊答案