9.已知直線ax+y+1=0與(a+2)x-3y+1=0互相垂直,則實(shí)數(shù)a等于( 。
A.1或3B.-1或3C.-3或1D.-3或-1

分析 由直線的垂直關(guān)系可得a的方程,解方程可得a值.

解答 解:若直線ax+y+1=0與(a+2)x-3y+1=0互相垂直,
則a(a+2)-3=0,解得:a=-3或a=1,
故選:C.

點(diǎn)評(píng) 本題考查直線的一般式方程和垂直關(guān)系,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,已知圓E:x2+(y-1)2=4經(jīng)過橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左右焦點(diǎn)F1,F(xiàn)2,與橢圓C在第一象限的交點(diǎn)為A,且F1,E,A三點(diǎn)共線.
(1)求橢圓C的方程;
(2)設(shè)與直線OA(O為原點(diǎn))平行的直線交橢圓C于M,N兩點(diǎn),當(dāng)△AMN的面積取取最大值時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)復(fù)數(shù)z=1+bi(b∈R),且z2=-3+4i,則$\overline{z}$的虛部為( 。
A.-2B.-4C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)變量x,y滿足越是條件$\left\{\begin{array}{l}{2x+y-6≥0}\\{x+2y-6≥0}\\{y≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+3y的最小值為( 。
A.6B.10C.12D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.有一段“三段論”推理:對(duì)于可導(dǎo)函數(shù)f(x),如果x=x0是函數(shù)f(x)的極值點(diǎn),那么f′(x0)=0,因?yàn)閤=0是函數(shù)f(x)=x3+x的極值點(diǎn),所以函數(shù)f(x)=x3+x在x=0處的導(dǎo)數(shù)值f′(0)=0.以上推理中( 。
A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.結(jié)論正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(Ⅰ)證明:AB⊥A1C;
(Ⅱ)若AB=CB=2,A1C=$\sqrt{6}$,求三棱柱ABC-A1B1C1的體積.求三棱錐C1-A1B1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.極坐標(biāo)方程ρcosθ=sin2θ,表示曲線的圖形是一條直線和一個(gè)圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知邊長(zhǎng)為6的等邊△ABC的三個(gè)頂點(diǎn)都在球O的表面上,O為球心,且OA與平面ABC所成的角為45°,則球O的表面積為96π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.動(dòng)直線y=kx+4-3k與函數(shù)$f(x)=\frac{4x-11}{x-3}$的圖象交于A、B兩點(diǎn),點(diǎn)P(x,y)是平面上的動(dòng)點(diǎn),滿足$|{\overrightarrow{PA}+\overrightarrow{PB}}|=2$,則x2+y2的取值范圍為[16,36].

查看答案和解析>>

同步練習(xí)冊(cè)答案