【題目】已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為,直線的斜率為,且原點(diǎn)到直線的距離為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若不經(jīng)過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),且與圓相切.試探究的周長(zhǎng)是否為定值,若是,求出定值;若不是,請(qǐng)說(shuō)明理由.

【答案】(1) (2) 的周長(zhǎng)為定值.

【解析】

1)根據(jù)已知條件結(jié)合,即可求出標(biāo)準(zhǔn)方程;

2)直線與圓相切,圓心到直線的距離等于半徑,得出關(guān)系,直線與橢圓聯(lián)立,求出相交弦長(zhǎng),再用兩點(diǎn)間距離公式,求出長(zhǎng),求出 的周長(zhǎng),即可判定結(jié)論.

: (1)由題可知,則

直線的方程為,所以

聯(lián)立①②,解得,又,

所以橢圓的標(biāo)準(zhǔn)方程式為.

(2)因?yàn)橹本與圓相切,

所以,即

設(shè),聯(lián)立

所以,

則由根與系數(shù)的關(guān)系可得

所以,

所以,

因?yàn)?/span>

同理,所以

所以的周長(zhǎng)為定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】垃圾種類可分為可回收垃圾、干垃圾、濕垃圾、有害垃圾等,為調(diào)查中學(xué)生對(duì)垃圾分類的了解程度,某調(diào)查小組隨機(jī)從本市一中高一的名學(xué)生(其中女生人)中,采用分層抽樣的方法抽取名學(xué)生進(jìn)行調(diào)查,已知抽取的名學(xué)生中有男生人、

(1)求值及抽到的女生人數(shù);

(2)調(diào)查小組請(qǐng)這名學(xué)生指出生活中若干項(xiàng)常見(jiàn)垃圾的種類,把能準(zhǔn)確分類不少于項(xiàng)的稱為“比較了解”,少于三項(xiàng)的稱為“不太了解”,調(diào)查結(jié)果如下:

0項(xiàng)

1項(xiàng)

2項(xiàng)

3項(xiàng)

4項(xiàng)

5項(xiàng)

5項(xiàng)以上

男生(人)

4

22

34

18

16

10

6

女生(人)

0

15

20+m

20

16

9

m

,完成如下列聯(lián)表,并判斷是否有的把握認(rèn)為學(xué)生對(duì)垃圾分類的了解程度與性別有關(guān)?

不太了解

比較了解

合計(jì)

男生

女生

合計(jì)

(3)在(2)條件下,從抽取的“比較了解”的學(xué)生中仍采用分層抽樣的方法抽取名.再?gòu)倪@名學(xué)生中隨機(jī)抽取人作義務(wù)講解員,求抽取的人中至少一名女生的概率.

參考數(shù)據(jù):

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“砸金蛋”(游玩者每次砸碎一顆金蛋,如果有獎(jiǎng)品,則“中獎(jiǎng)”)是現(xiàn)在商家一種常見(jiàn)促銷手段.今年“雙十一”期間,甲、乙、丙、丁四位顧客在商場(chǎng)購(gòu)物時(shí),每人均獲得砸一顆金蛋的機(jī)會(huì).游戲開(kāi)始前,甲、乙、丙、丁四位顧客對(duì)游戲中獎(jiǎng)結(jié)果進(jìn)行了預(yù)測(cè),預(yù)測(cè)結(jié)果如下:

甲說(shuō):“我或乙能中獎(jiǎng)”;

乙說(shuō):“丁能中獎(jiǎng)”;

丙說(shuō):“我或乙能中獎(jiǎng)”;

丁說(shuō):“甲不能中獎(jiǎng)”.

游戲結(jié)束后,這四位同學(xué)中只有一位同學(xué)中獎(jiǎng),且只有一位同學(xué)的預(yù)測(cè)結(jié)果是正確的,則中獎(jiǎng)的同學(xué)是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)若存在極小值,求實(shí)數(shù)的取值范圍;

(2)設(shè)的極小值點(diǎn),且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的半焦距為,圓與橢圓有且僅有兩個(gè)公共點(diǎn),直線與橢圓只有一個(gè)公共點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知?jiǎng)又本過(guò)橢圓的左焦點(diǎn),且與橢圓分別交于兩點(diǎn),試問(wèn):軸上是否存在定點(diǎn),使得為定值?若存在,求出該定值和點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著手機(jī)的發(fā)展,“微信”逐漸成為人們交流的一種形式.某機(jī)構(gòu)對(duì)“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對(duì)“使用微信交流”贊成人數(shù)如下表.

年齡

(單位:歲)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75]

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(1)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計(jì)

贊成

不贊成

合計(jì)

(2)若從年齡在[55,65)的被調(diào)查人中隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求2人中至少有1人不贊成“使用微信交流”的概率.

參考數(shù)據(jù):

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2,其中nabcd.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)求的普通方程和的直角坐標(biāo)方程;

2)直線軸的交點(diǎn)為,經(jīng)過(guò)點(diǎn)的直線與曲線交于兩點(diǎn),若,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列滿足;

(1)若,求證:數(shù)列為等比數(shù)列;

(2)在(1)的條件下,對(duì)于正整數(shù),若這三項(xiàng)經(jīng)適當(dāng)排序后能構(gòu)成等差數(shù)列,求符合條件的數(shù)組

(3)若的前項(xiàng)和,求不超過(guò)的最大整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:{an}是公比大于1的等比數(shù)列,Sn為其前n項(xiàng)和,S37,且a1+3,3a2a3+4構(gòu)成等差數(shù)列.

1)求數(shù)列{an}的通項(xiàng)公式;

2)令bnlog2a3n+1,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案