2.已知函數(shù)f(x)=ex(x2-2x+a)(其中a∈R,a為常數(shù),e為自然對數(shù)的底數(shù)).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)設(shè)曲線y=f(x)在(a,f(a))處的切線為l,當(dāng)a∈[1,3]時,求直線l在y軸上截距的取值范圍.

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)求出函數(shù)的導(dǎo)數(shù),表示出截距b=ea(-a3+a),記g(a)=ea(-a3+a),根據(jù)函數(shù)的單調(diào)性求出截距的范圍即可.

解答 解:(Ⅰ)f'(x)=ex(x2-2x+a)+ex(2x-2)=ex(x2+a-2),
當(dāng)a≥2時,f'(x)≥0恒成立,函數(shù)f(x)的遞增區(qū)間是R;
當(dāng)a<2時,$f'(x)≥0?{x^2}≥2-a?x≤-\sqrt{2-a}$或$x≥\sqrt{2-a}$,
函數(shù)f(x)的遞增區(qū)間是$(-∞,-\sqrt{2-a}),(\sqrt{2-a},+∞)$,遞減區(qū)間是$(-\sqrt{2-a},\sqrt{2-a})$;
(Ⅱ)f(a)=ea(a2-a),f'(a)=ea(a2+a-2),
所以直線l的方程為:y-ea(a2-a)=ea(a2+a-2)(x-a),令x=0得到:
截距b=ea(-a3+a),記g(a)=ea(-a3+a),g'(a)=ea(-a3-3a2+a+1),
記h(a)=-a3-3a2+a+1⇒h'(a)=-3a2-6a+1<0(∵1≤a≤3)
所以h(a)遞減,h(a)≤h(1)=-2<0,
∴g'(a)<0,即g(a)在區(qū)間[1,3]上單調(diào)遞減,
∴g(3)≤g(a)≤g(1),即截距的取值范圍是:[-24e3,0].

點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,是一道綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.學(xué)校為了了解高三學(xué)生每天自主學(xué)習(xí)中國古典文學(xué)的時間,隨機抽取了高三男生和女生各50名進行問卷調(diào)查,其中每天自主學(xué)習(xí)中國古典文學(xué)的時間超過3小時的學(xué)生稱為“古文迷”,否則為“非古文迷”,調(diào)查結(jié)果如表:
古文迷非古文迷合計
男生262450
女生302050
合計5644100
(Ⅰ)根據(jù)表中數(shù)據(jù)能否判斷有60%的把握認(rèn)為“古文迷”與性別有關(guān)?
(Ⅱ)現(xiàn)從調(diào)查的女生中按分層抽樣的方法抽出5人進行調(diào)查,求所抽取的5人中“古文迷”和“非古文迷”的人數(shù);
(Ⅲ)現(xiàn)從(Ⅱ)中所抽取的5人中再隨機抽取3人進行調(diào)查,記這3人中“古文迷”的人數(shù)為ξ,求隨機變量ξ的分布列與數(shù)學(xué)期望.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3213.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)$f(x)=\left\{\begin{array}{l}xlnx-3x,x>0\\{x^2}+\frac{3}{2}x,x≤0\end{array}\right.$的圖象上有且只有四個不同的點關(guān)于直線y=-1的對稱點在直線y=kx-1上,則實數(shù)k的取值范圍是( 。
A.$({\frac{2}{7},1})$B.$({\frac{1}{3},3})$C.$({\frac{1}{2},2})$D.$({2,\frac{7}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的前n項和Sn=$\frac{n(n+1)}{2}$,數(shù)列{bn}滿足bn=an+an+1(n∈N*).
(1)求數(shù)列{bn}的通項公式;
(2)若cn=2${\;}^{{a}_{n}}$•(bn-1)(n∈N*),求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=$\frac{2sinx}{{1+\frac{1}{x^2}}}(x∈[-\frac{3π}{4},0)∪(0,\frac{3π}{4}])$的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知A(-1,0),B(1,0),$\overrightarrow{AP}$=$\overrightarrow{AB}$+$\overrightarrow{AC}$,|$\overrightarrow{AP}$|+|$\overrightarrow{AC}$|=4
(1)求P的軌跡E
(2)過軌跡E上任意一點P作圓O:x2+y2=3的切線l1,l2,設(shè)直線OP,l1,l2的斜率分別是k0,k1,k2,試問在三個斜率都存在且不為0的條件下,$\frac{1}{{k}_{0}}$($\frac{1}{{k}_{1}}$+$\frac{1}{{k}_{2}}$)是否是定值,請說明理由,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在中國文字語言中有回文句,如:“中國出人才人出國中.”其實,在數(shù)學(xué)中也有回文數(shù).回文數(shù)是指從左到右與從右到左讀都一樣的正整數(shù),如:3位回文數(shù):101,111,121,…,191,202,…,999.則5位回文數(shù)有(  )
A.648個B.720個C.900個D.1000個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=(ax2-bx)ex(其中e是自然對數(shù)的底數(shù),a,b∈R)的圖象在A(0,f(0))處的切線與直線x+y+2=0垂直.
(Ⅰ)當(dāng)a=-$\frac{1}{2}$時,求函數(shù)f(x)的極值點;
(Ⅱ)若f(x)≤x在[-1,0]上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=|x2-2x+a-1|-a2-2a.
(1)當(dāng)a=3時,求f(x)≥-10的解集;
(2)若f(x)≥0對x∈R恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案