14.某商品的進(jìn)價為每件40元,售價為每件60元時,每個月可賣出100件;如果每件商品的售價每上漲1元,則每個月少賣2件.設(shè)每件商品的售價為x元(x≥60),每個月的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式;
(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?

分析 (1)利用已知條件,列出y與x的函數(shù)關(guān)系式,注明定義域.
(2)利用二次函數(shù)的性質(zhì)求解函數(shù)的最值即可.

解答 解:(1)由題意解得:y=[100-2(x-60)](x-40)
=-2x2+300x-8800;(60≤x≤110);
(2)y=-2(x-75)2+2450,當(dāng)x=75元時,y有最大值為2450元.

點(diǎn)評 本題考查函數(shù)的實際應(yīng)用,列出函數(shù)的解析式,是解題的關(guān)鍵,考查二次函數(shù)的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{ an}是等差數(shù)列,其中 a3=9,a9=3
(1)求數(shù)列{ an}的通項,
(2)數(shù)列{ an}從哪一項開始小于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知tanα=2
(1)求$\frac{3sinα+2cosα}{sinα-cosα}$的值;
(2)若α是第三象限角,求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=$\frac{{{a^{2x}}-({t-1})}}{a^x}$(a>0且a≠1)是定義域為R的奇函數(shù).
(1)求t的值;
(2)若f(1)>0,求使不等式f(kx-x2)+f(x-1)<0對一切x∈R恒成立的實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù),且a≠0)滿足條件:f(-x+5)=f(x-3)且方程f(x)=x有等根.
(1)求f(x)的表達(dá)式;
(2)是否存在實數(shù)m,n(m<n)使f(x)的定義域和值域分別是[m,n]和[3m,3n],如果存在,求出m,n的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=sin2xcosφ+cos2xsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期和值域;
(2)設(shè)若點(diǎn)($\frac{π}{6}$,$\frac{1}{2}$)在函數(shù)y=f(x+$\frac{π}{6}$)的圖象上,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)X={$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,$\frac{1}{5}$},若集合G⊆X,定義G中所有元素之乘積為集合G的“積數(shù)”(單元素集合的“積數(shù)”是這個元素本身),則集合X的所有非空子集的“積數(shù)”的總和為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若事件A與B互斥,已知P(A)=P(B)=$\frac{1}{4}$,則P(A∪B)的值為(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{16}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.f(x)定義在R上的偶函數(shù),且x≥0時,f(x)=x3,若對任意x∈[2t-1,2t+3],不等式f(3x-t)≥8f(x)恒成立,則實數(shù)t的取值范圍是(-∞,-3]∪{0}∪[1,+∞).

查看答案和解析>>

同步練習(xí)冊答案