5.已知tanα=2
(1)求$\frac{3sinα+2cosα}{sinα-cosα}$的值;
(2)若α是第三象限角,求cosα的值.

分析 因?yàn)轭}目條件中已知tanα=2,所以轉(zhuǎn)化為tanα求值.
(1)$\frac{3sinα+2cosα}{sinα-cosα}=\frac{3tanα+2}{tanα-1}$將tanα=2代入即可;
(2)解法1:借助于$\frac{sinα}{cosα}=tanα$和sin2α+cos2α=1得解;解法2:利用cos2α=$\frac{co{s}^{2}α}{co{s}^{2}α+si{n}^{2}α}$=$\frac{1}{1+ta{n}^{2}α}$,“弦”化“切”解之即可.

解答 解:(1)因?yàn)閠anα=2,所以$\frac{3sinα+2cosα}{sinα-cosα}$=$\frac{3tanα+2}{tanα-1}$=$\frac{3×2+2}{2-1}$=8.
(2)解法1:由$\frac{sinα}{cosα}$=tanα=2,得sinα=2cosα,又sin2α+cos2α=1,
故5cos2α=1,即cos2α=$\frac{1}{5}$,因?yàn)棣潦堑谌笙藿,cosα<0,所以cosα=-$\frac{\sqrt{5}}{5}$.
解法2:因?yàn)閏os2α=$\frac{co{s}^{2}α}{co{s}^{2}α+si{n}^{2}α}$=$\frac{1}{1+ta{n}^{2}α}$=$\frac{1}{1{+2}^{2}}$=$\frac{1}{5}$,
又因?yàn)棣潦堑谌笙藿牵詂osα<0,
所以cosα=-$\frac{\sqrt{5}}{5}$.

點(diǎn)評(píng) 本題考查同角三角函數(shù)關(guān)系的運(yùn)用,本題考查sinα、cosα和tanα三者之間的關(guān)系.借助于$\frac{sinα}{cosα}=tanα$和sin2α+cos2α=1得解是關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)cos(-80°)=m那么tan100° 等于(  )
A.$\frac{\sqrt{1-{m}^{2}}}{m}$B.-$\frac{\sqrt{1-{m}^{2}}}{m}$C.$\frac{m}{\sqrt{1-{m}^{2}}}$D.-$\frac{m}{\sqrt{1-{m}^{2}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如果f[f(x)]=4x+6,且f(x)是遞增函數(shù),則一次函數(shù)f(x)=2x+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知命題p:存在n∈R,使得f(x)=nx${\;}^{{n}^{2}+2n}$是冪函數(shù),且在(0,+∞)上單調(diào)遞增;命題q:“?x∈R,x2+2x>3x”的否定是“?x∈R,x2+2x<3x”,則下列命題為真命題的是(  )
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖所示,橢圓C:$\frac{{x}^{2}}{4}$+y2=1,左右焦點(diǎn)分別記作F1,F(xiàn)2,過(guò)F1,F(xiàn)2分別作直線l1,l2交橢圓AB,CD,且l1∥l2
(1)當(dāng)直線l1的斜率k1與直線BC的斜率k2都存在時(shí),求證:k1•k2為定值;
(2)求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知直角△ABC如圖所示,其中∠ABC=90°,D,E分別是AB,AC邊上的中點(diǎn).現(xiàn)沿折痕DEDE將△ADE翻折,使得A與平面ABC外一點(diǎn)P重合,得到如圖(2)所示的幾何體
(1)證明:平面PBD⊥平面BCED;
(2)記平面PDE與平面PBC的交線為l,探究:直線l與BC是否平行.若平行,請(qǐng)給出證明,若不平行,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某車間共有12名工人,隨機(jī)抽取6名,他們某日加工零件個(gè)數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù).
(Ⅰ) 根據(jù)莖葉圖計(jì)算樣本均值;
(Ⅱ) 日加工零件個(gè)數(shù)大于樣本均值的工人為優(yōu)秀工人.根據(jù)莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人;
(Ⅲ)在(Ⅱ)的條件下,從該車間12名工人中,任取2人,記取出的2人中優(yōu)秀工人的人數(shù)為隨機(jī)變量ξ,求ξ的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.某商品的進(jìn)價(jià)為每件40元,售價(jià)為每件60元時(shí),每個(gè)月可賣出100件;如果每件商品的售價(jià)每上漲1元,則每個(gè)月少賣2件.設(shè)每件商品的售價(jià)為x元(x≥60),每個(gè)月的銷售利潤(rùn)為y元.
(1)求y與x的函數(shù)關(guān)系式;
(2)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大的月利潤(rùn)是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=ex-x+a,g(x)=$\frac{1}{{e}^{x}}$+x+a2,a∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在x∈[0,2],使得f(x)<g(x)成立,求a的取值范圍;
(3)設(shè)x1,x2是函數(shù)f(x)的兩個(gè)不同零點(diǎn),求證:e${\;}^{{x}_{1}+{x}_{2}}$<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案