如圖所示,已知在圓錐SO中,底面半徑r=1,母線長l=4,M為母線SA上的一個點(diǎn),且SM=x,從點(diǎn)M拉一根繩子,圍繞圓錐側(cè)面轉(zhuǎn)到點(diǎn)A,求:
(1)設(shè)f(x)為繩子最短長度的平方,求f(x)表達(dá)式;
(2)繩子最短時,頂點(diǎn)到繩子的最短距離;
(3)f(x)的最大值.
(1)f(x)=AM2=x2+16(0≤x≤4)(2)(3)32
解析試題分析:將圓錐的側(cè)面沿SA展開在平面上,如圖,則該展開圖為扇形,且弧AA′的長度L就是⊙O的周長,
∴L=2πr=2π.∴∠ASA′=×360°=×360°=90°,
(1)由題意知,繩長的最小值為展開圖中的AM,其值為AM= (0≤x≤4),
∴f(x)=AM2=x2+16(0≤x≤4).
(2)繩子最短時,在展開圖中作SR⊥AM,垂足為R,則SR的長度為頂點(diǎn)S到繩子的最短距離.在△SAM中,∵S△SAM=SA·SM=AM· SR,
∴SR== (0≤x≤4).
(3)∵f(x)=x2+16(0≤x≤4)是增函數(shù),∴f(x)的最大值為f(4)=32.
考點(diǎn):本小題主要考查扇形的弧長、面積公式等的應(yīng)用,考查學(xué)生的運(yùn)算求解能力.
點(diǎn)評:解決此類問題的關(guān)鍵是正確轉(zhuǎn)化,將所要求解的問題轉(zhuǎn)化為熟悉的數(shù)學(xué)問題進(jìn)行解決.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,斜三棱柱ABC-A'B'C'中,底面是邊長為a的正三角形,側(cè)棱長為b,側(cè)棱AA'與底面相鄰兩邊AB,AC都成45°角.
(Ⅰ)求此斜三棱柱的表面積.
(Ⅱ)求三棱錐B'-ABC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,正三棱柱中,側(cè)面是邊長為2的正方形,是的中點(diǎn),在棱上.
(1)當(dāng)時,求三棱錐的體積.
(2)當(dāng)點(diǎn)使得最小時,判斷直線與是否垂直,并證明結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)如圖所示,三棱柱A1B1C1—ABC的三視圖中,正(主)視圖和側(cè)(左)視圖是全等的矩形,俯視圖是等腰直角三角形,點(diǎn)M是A1B1的中點(diǎn).
(1)求證:B1C∥平面AC1M;
(2)求證:平面AC1M⊥平面AA1B1B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,某多面體的直觀圖及三視圖如圖所示: E,F分別為PC,BD的中點(diǎn)
(1)求證:
(2)求證:
(3)求此多面體的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,四棱錐的底面是菱形,,面, 是的中點(diǎn), 是的中點(diǎn).
(Ⅰ)求證:面⊥面;
(Ⅱ)求證:∥面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分) 在長方體中,分別是的中點(diǎn),
,.
(Ⅰ)求證://平面;
(Ⅱ)在線段上是否存在點(diǎn),使直線與垂直,
如果存在,求線段的長,如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com