【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取名學(xué)生,將其數(shù)學(xué)成績(jī)(均為整數(shù))分成六段后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問(wèn)題:

(1)求分?jǐn)?shù)在內(nèi)的頻率,補(bǔ)全這個(gè)頻率分布直方圖,并據(jù)此估計(jì)本次考試的平均分;

(2)用分層抽樣的方法,在分?jǐn)?shù)段為的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2個(gè),求至多有1人在分?jǐn)?shù)段內(nèi)的概率

【答案】(1)詳見解析(2)

【解析】

1)首先可以計(jì)算出除了之外的其他分?jǐn)?shù)段的頻率,然后計(jì)算出分?jǐn)?shù)在內(nèi)的頻率,再用頻率除以組距即可,然后用每一分?jǐn)?shù)段的中間數(shù)乘以每一分?jǐn)?shù)段的概率再相加即可得出平均分;

2)首先算出在以及兩個(gè)分?jǐn)?shù)段中抽取的人數(shù),然后列出從中任取2個(gè)的所有可能的事件,并找出滿足題目要求的事件,即可得出結(jié)果。

(1)分?jǐn)?shù)在內(nèi)的頻率為(直方圖略),平均分為:,

(2)由題意,分?jǐn)?shù)段的人數(shù)為:人,

分?jǐn)?shù)段的人數(shù)為:人,

因?yàn)橛梅謱映闃拥姆椒ㄔ诜謹(jǐn)?shù)段為的學(xué)生中抽取一個(gè)容量為的樣本,抽樣比,所以需在分?jǐn)?shù)段內(nèi)抽取人,并分別記為;

分?jǐn)?shù)段內(nèi)抽取人并分別記為

設(shè)“從樣本中任取2人,至多有1人在分?jǐn)?shù)段內(nèi)”為事件A,

則基本事件有:

共15種.

事件A包含的基本事件有:(

種,所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的離心率,左焦點(diǎn)為,右頂點(diǎn)為,過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),若直線垂直于軸時(shí),有.

(1)求橢圓的方程;

(2)設(shè)直線 上兩點(diǎn), 關(guān)于軸對(duì)稱,直線與橢圓相交于點(diǎn)異于點(diǎn)),直線軸相交于點(diǎn).若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和滿足:,數(shù)列滿足:對(duì)任意.

1)求數(shù)列與數(shù)列的通項(xiàng)公式;

2)記,數(shù)列的前項(xiàng)和為,證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不一定正確的是(

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的20%

C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80后多

D.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1時(shí),求上的單調(diào)區(qū)間;

2, 均恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了實(shí)現(xiàn)1000萬(wàn)元利潤(rùn)的目標(biāo),準(zhǔn)備制定一個(gè)激勵(lì)銷售人員的獎(jiǎng)勵(lì)方案:在銷售利潤(rùn)達(dá)到10萬(wàn)元時(shí),按銷售利潤(rùn)進(jìn)行獎(jiǎng)勵(lì),且獎(jiǎng)勵(lì)金額y(單位:萬(wàn)元)隨銷售利潤(rùn)x(單位:萬(wàn)元)的增加而增加,但獎(jiǎng)金總數(shù)不超過(guò)5萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)利潤(rùn)的25%.現(xiàn)有三個(gè)獎(jiǎng)勵(lì)模型:,,其中哪個(gè)模型能符合公司的要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】按照《國(guó)務(wù)院關(guān)于印發(fā)十三五節(jié)能減排綜合工作方案的通知》(國(guó)發(fā)〔201674號(hào))的要求,到2020年,全國(guó)二氧化硫排放總量要控制在1580萬(wàn)噸以內(nèi),要比2015年下降15%.假設(shè)十三五期間每一年二氧化硫排放總量下降的百分比都相等,2015年后第年的二氧化硫律放總量最大值為萬(wàn)噸.

1)求的解析式;

2)求2019年全國(guó)二氧化賴持放總量要控制在多少萬(wàn)晚以內(nèi)(精確到1萬(wàn)噸).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱中,底面是邊長(zhǎng)為2的正三角形,側(cè)棱長(zhǎng)為,的中點(diǎn)

1)若,證明:平面;

2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】因客流量臨時(shí)增大,某鞋店擬用一個(gè)高為50(即)的平面鏡自制一個(gè)豎直擺放的簡(jiǎn)易鞋鏡,根據(jù)經(jīng)驗(yàn):一般顧客的眼睛到地面的距離為)在區(qū)間內(nèi),設(shè)支架高為,,顧客可視的鏡像范圍為(如圖所示),記的長(zhǎng)度為).

(I)當(dāng)時(shí),試求關(guān)于的函數(shù)關(guān)系式和的最大值;

(II)當(dāng)顧客的鞋在鏡中的像滿足不等關(guān)系(不計(jì)鞋長(zhǎng))時(shí),稱顧客可在鏡中看到自己的鞋,若使一般顧客都能在鏡中看到自己的鞋,試求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案