(2007•揭陽二模)某港口水的深度y(米)是時(shí)間t(0≤t≤24,單位:時(shí))的函數(shù),記作y=f(t),下面是某日水深的數(shù)據(jù):
t/h 0 3 6 9 12 15 18 21 24
y/m 10.0 13.0 9.9 7.0 10.0 13.0 10.1 7.0 10.0
經(jīng)常期觀察,y=f(t)的曲線可以近似的看成函數(shù)y=Asinωt+b的圖象,根據(jù)以上的數(shù)據(jù),可得函數(shù)y=f(t)的近似表達(dá)式為
y=3sin
π
6
t+10
y=3sin
π
6
t+10
分析:根據(jù)已知數(shù)據(jù),可得y=f(t)的周期,振幅,即可求出函數(shù)解析式.
解答:解:由已知數(shù)據(jù),可得y=f(t)的周期T=12,振幅A=13-10=3,b=10,
所以函數(shù)y=f(t)的近似表達(dá)式為y=3sin
π
6
t+10

故答案為:y=3sin
π
6
t+10
點(diǎn)評(píng):本題考查三角函數(shù)模型的確立,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2007•揭陽二模)如圖(1)示,定義在D上的函數(shù)f(x),如果滿足:對(duì)?x∈D,?常數(shù)A,都有f(x)≥A成立,則稱函數(shù)f(x)在D上有下界,其中A稱為函數(shù)的下界.(提示:圖(1)、(2)中的常數(shù)A、B可以是正數(shù),也可以是負(fù)數(shù)或零)  

(Ⅰ)試判斷函數(shù)f(x)=x3+
48
x
在(0,+∞)上是否有下界?并說明理由;
(Ⅱ)又如具有如圖(2)特征的函數(shù)稱為在D上有上界.請(qǐng)你類比函數(shù)有下界的定義,給出函數(shù)f(x)在D上有上界的定義,并判斷(Ⅰ)中的函數(shù)在(-∞,0)上是否有上界?并說明理由;
(Ⅲ)若函數(shù)f(x)在D上既有上界又有下界,則稱函數(shù)f(x)在D上有界,函數(shù)f(x)叫做有界函數(shù).試探究函數(shù)f(x)=ax3+
b
x
(a>0,b>0a,b是常數(shù))是否是[m,n](m>0,n>0,m、n是常數(shù))上的有界函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•揭陽二模)下圖是用同樣規(guī)格的黑、白兩色正方形瓷磚鋪設(shè)的若干圖案,則按此規(guī)律第n個(gè)圖案中需用黑色瓷磚
4n+8
4n+8
塊.(用含n的代數(shù)式表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•揭陽二模)已知函數(shù)f(x)=logax(a>0,a≠1)的圖象如右圖示,函數(shù)y=g(x)的圖象與y=f(x)的圖象關(guān)于直線y=x對(duì)稱,則函數(shù)y=g(x)的解析式為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•揭陽二模)已知點(diǎn)P(x,y)的坐標(biāo)滿足條件
x+y≤4
y≥x
x≥1.
則x2+y2的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•揭陽二模)某地區(qū)的一種特色水果上市時(shí)間僅能持續(xù)幾個(gè)月,預(yù)測上市初期和后期會(huì)因供不應(yīng)求使價(jià)格呈連續(xù)上漲的態(tài)勢,而中期又將出現(xiàn)供大于求使價(jià)格連續(xù)下跌,為準(zhǔn)確研究其價(jià)格走勢,下面給出的四個(gè)價(jià)格模擬函數(shù)中合適的是(其中p,q為常數(shù),且q>1,x∈[0,5],x=0表示4月1日,x=1表示5月1日,…以此類推)( 。

查看答案和解析>>

同步練習(xí)冊答案