4.函數(shù)y=αx-2-1(α>0且α≠1)的圖象恒過的點(diǎn)的坐標(biāo)是(2,0).

分析 由解析式令x-2=0求出x和y的值,可得函數(shù)圖象過的定點(diǎn)坐標(biāo).

解答 解:令x-2=0得x=2,則y=αx-2-1=1-1=0,
所以函數(shù)y=αx-2-1的圖象過定點(diǎn)(2,0),
故答案為:(2,0).

點(diǎn)評 本題考查指數(shù)函數(shù)圖象過定點(diǎn)問題,主要利用a0=1,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若$f(x)=cos2x+acos({\frac{π}{2}+x})$在區(qū)間$({\frac{π}{6},\frac{π}{2}})$上是增函數(shù),則實(shí)數(shù)a的取值范圍為( 。
A.[-2,+∞)B.(-2,+∞)C.(-∞,-4)D.(-∞,-4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知矩形ABEF所在的平面與矩形ABCD所在的平面互相垂直,AD=2,AB=3,AF=$\frac{{3\sqrt{3}}}{2}$,M為EF的中點(diǎn),則多面體M-ABCD的外接球的表面積為16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知α是第一象限角,滿足$sinα-cosα=\frac{{\sqrt{10}}}{5}$,則cos2α=( 。
A.-$\frac{3}{5}$B.$±\frac{3}{5}$C.$-\frac{4}{5}$D.$±\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),且f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x+1),x≥0}\\{g(x),x<0}\end{array}\right.$,則g(-8)=(  )
A.-2B.-3C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.據(jù)統(tǒng)計(jì),用于數(shù)學(xué)學(xué)習(xí)的時(shí)間(單位:小時(shí))與成績(單位:分)近似于線性相關(guān)關(guān)系.對某小組學(xué)生每周用于數(shù)學(xué)學(xué)習(xí)時(shí)間x與數(shù)學(xué)成績y進(jìn)行數(shù)據(jù)收集如表:
x1516181922
y10298115115120
由表中樣本數(shù)據(jù)求回歸直線方程$\stackrel{∧}{y}$=bx+a,則點(diǎn)(a,b)與直線x+18y=110的位置關(guān)系為是( 。
A.點(diǎn)在直線左側(cè)B..點(diǎn)在直線右側(cè)C..點(diǎn)在直線上D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.中國傳統(tǒng)文化中不少優(yōu)美的古詩詞很講究對仗,如“明月松間照,清泉石上流”中明月對清泉同為自然景物,明和清都是形容詞,月和泉又都是名詞,數(shù)學(xué)除了具有簡潔美、和諧美、奇異美外,也具有和古詩詞中對仗類似的對稱美.請你判斷下面四個(gè)選項(xiàng)中,體現(xiàn)數(shù)學(xué)對稱美的是( 。
A.“$1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{100}$”表示成“$\sum_{k=1}^{100}{\frac{1}{k}}$”
B.平面上所有二次曲線的一般形式均可表示成:Ax2+Bxy+Cy2+Dx+Ey+F=0
C.正弦定理:$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}$
D.123456789×9+10=1111111111

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x}-1,(x<1)}\\{{x}^{3}-9{x}^{2}+24x-16,(x≥1)}\end{array}\right.$,則關(guān)于x的方程f(x)=a(a為實(shí)數(shù))根個(gè)數(shù)不可能為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知拋物線E:y2=2px(p>0)的焦點(diǎn)為F,過F且垂直于x軸的直線與拋物線E交于A,B兩點(diǎn),E的準(zhǔn)線與x軸交于點(diǎn)C,△CAB的面積為4,以點(diǎn)D(3,0)為圓心的圓D過點(diǎn)A,B.
(Ⅰ)求拋物線E和圓D的方程;
(Ⅱ)若斜率為k(|k|≥1)的直線m與圓D相切,且與拋物線E交于M,N兩點(diǎn),求$\overrightarrow{FM}•\overrightarrow{FN}$的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案