8.已知二次函數(shù)y=x2-2tx+1在區(qū)間(1,3)內(nèi)是單調(diào)的,則實數(shù)t的取值范圍是( 。
A.t≤-3或t≥-1B.-3≤t≤-1C.t≤1或t≥3D.1≤t≤3

分析 若二次函數(shù)y=x2-2tx+1在區(qū)間(1,3)內(nèi)是單調(diào)的,則t≤1或t≥3.

解答 解:二次函數(shù)y=x2-2tx+1圖象的對稱軸是直線x=t,
∵二次函數(shù)y=x2-2tx+1在區(qū)間(1,3)內(nèi)是單調(diào)的,
∴t≤1或t≥3,
故選:C.

點評 本題考查的知識點是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆江西吉安一中高三上學(xué)期段考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

給出下列三個命題:

①“若,則”為假命題;

②若為假命題,則均為假命題;

③命題,則,其中正確的個數(shù)是( )

A.0 B.1 C.2 D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南永州市高三高考一?荚嚁(shù)學(xué)(文)試卷(解析版) 題型:選擇題

中,是角的對邊,,,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.等邊三角形AOB的邊長為a,建立如圖所示的直角坐標(biāo)系xOy,用斜二測畫法得到它的直觀圖,則它的直觀圖的面積是$\frac{{\sqrt{6}}}{16}{a^2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.母線長為1的圓錐的側(cè)面展開圖的面積是$\frac{2}{3}$π,則該圓錐的體積為( 。
A.$\frac{2\sqrt{2}}{81}$πB.$\frac{8}{81}$πC.$\frac{4\sqrt{5}}{81}$πD.$\frac{10}{81}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.給出下列命題,其中正確的序號是③?④(寫上所有正確命題的序號).
①函數(shù)f(x)=ln(x-1)+2的圖象恒過定點(1,2).
②若函數(shù)f(x)的定義域為[-1,1],則函數(shù)f(2x-1)的定義域為[-3,1].
③已知集合P={a,b},Q={-1,0,1},則映射f:P→Q中滿足f(b)=0的映射共有3個.
④若函數(shù)f(x)=log2(x2-2ax+1)的定義域為R,則實數(shù)a的取值范圍是(-1,1).
⑤函數(shù)f(x)=ex的圖象關(guān)于直線y=x對稱的函數(shù)解析式為y=lgx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,角A、B、C的對邊分別為a、b、c,且滿足asinC=$\sqrt{3}$ccosA.
(Ⅰ) 求角A的大;
(Ⅱ) 若△ABC面積S=5$\sqrt{3}$,b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)f(x)=$\left\{{\begin{array}{l}{x+2(x≤-1)}\\{{x^2}(-1<x<2)}\\{2x(x≥2)}\end{array}}$,
(1)在下列直角坐標(biāo)系中畫出f(x)的圖象;
(2)若f(x)=3,求x的值;
(3)看圖象寫出函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)f(x)=(${\frac{1}{2}}$)|1-x|+m有零點,則m的取值范圍是-1≤m<0.

查看答案和解析>>

同步練習(xí)冊答案