已知是二次函數(shù),不等式的解集是(0,5),且在區(qū)間[-1,4]上的最大值是12.
(1)求f(x)的解析式;
(2)是否存在正整數(shù)m,使得方程在區(qū)間內(nèi)有且只有兩個不等的實數(shù)根?若存在,求出所有m的值;若不存在,請說明理由.
(1);(2)方程,
設(shè),則.
當時,,是減函數(shù);當時,,是增函數(shù).
因為.所以方程在區(qū)間,內(nèi)分別有唯一實數(shù)根,而區(qū)間,內(nèi)沒有實數(shù)根.所以存在唯一的正數(shù),使得方程在區(qū)間內(nèi)有且只有兩個不等的實數(shù)根.
【解析】
試題分析:(1)由已知得0,5是二次函數(shù)的兩個零點值,所以可設(shè),開口方向向上,對稱軸為,因此在區(qū)間上的最大值是,則,即,因此可求出函數(shù)的解析式;(2)由(1)得,構(gòu)造函數(shù),則方程的實數(shù)根轉(zhuǎn)化為函數(shù)的零點,利用導(dǎo)數(shù)法得到函數(shù)減區(qū)間為、增區(qū)間為,又有,,,發(fā)現(xiàn)函數(shù)在區(qū)間,內(nèi)分別有唯一零點,而在區(qū)間,內(nèi)沒有零點,所以存在唯一的正數(shù),使得方程在區(qū)間內(nèi)有且只有兩個不等的實數(shù)根.
(1)因為是二次函數(shù),且的解集是,
所以可設(shè) 2分
所以在區(qū)間上的最大值是. 4分
由已知,得,.. 6分
(2)方程,
設(shè),則. 10分
當時,,是減函數(shù);
當時,,是增函數(shù). 10分
因為.
所以方程在區(qū)間,內(nèi)分別有唯一實數(shù)根,而區(qū)間,內(nèi)沒有實數(shù)根. 12分
所以存在唯一的正數(shù),使得方程在區(qū)間內(nèi)有且只有兩個不等的實數(shù)根. 14分
考點:1.函數(shù)解析式;2.函數(shù)零點.
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年天津市紅橋區(qū)高三第一次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
設(shè)集合A={},B={},則=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年天津市河北區(qū)高三總復(fù)習(xí)質(zhì)量檢測(一)理科數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,AB是半圓D的直徑,P在AB的延長線上,PD與半圓O相切于點C,ADPD.若PC=4,PB=2,則CD=____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年天津市河北區(qū)高三總復(fù)習(xí)質(zhì)量檢測(一)理科數(shù)學(xué)試卷(解析版) 題型:選擇題
一個幾何體的三視圖如圖所示,
則該幾何體的體積是( 。.
(A) (B) (C) (D)2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年天津市河北區(qū)高三總復(fù)習(xí)質(zhì)量檢測(一)文科數(shù)學(xué)試卷(解析版) 題型:解答題
己知A、B、C分別為△ABC的三邊a、b、c所對的角,向量
,且.
(1)求角C的大。
(2)若sinA,sinC,sinB成等差數(shù)列,且,求邊c的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年天津市河北區(qū)高三總復(fù)習(xí)質(zhì)量檢測(一)文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù),若,且,則的最小值為().
(A) (B) (C)2 (D)4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年天津市河?xùn)|區(qū)高三一模試卷理科數(shù)學(xué)試卷(解析版) 題型:填空題
三棱柱的直觀圖和三視圖(主視圖和俯視圖是正方形,左視圖是等腰直角三角形)如圖所永,則這個三棱柱的全面積等于_____________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年天津市河?xùn)|區(qū)高三一模理科數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,AB是圓O的直徑,AD=DE,AB=8,BD=6,則__________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com