17.若正實數(shù)x,y滿足x+2y=1,則x•y的最大值為$\frac{1}{8}$.

分析 根據(jù)題意,由基本不等式的性質(zhì)可得1=$x+2y≥2\sqrt{2xy}$,將其變形可得$\sqrt{xy}≤\frac{1}{{2\sqrt{2}}}$,進而可得$xy≤\frac{1}{8}$,即可得答案.

解答 解:根據(jù)題意,若正實數(shù)x,y滿足x+2y=1,則有1=$x+2y≥2\sqrt{2xy}$,
則$\sqrt{xy}≤\frac{1}{{2\sqrt{2}}}$,即$xy≤\frac{1}{8}$,
故答案為:$\frac{1}{8}$.

點評 本題考查基本不等式的應(yīng)用,關(guān)鍵是熟悉基本不等式的形式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=-$\frac{1}{2}$x2+ax-lnx(a∈R).
(Ⅰ)當(dāng)a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)f(x)有兩個極值點x1,x2(x1<x2),求證:4f(x1)-2f(x2)≤1+3ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=6sinωxcosωx-8cos2ωx+3(ω>0),y=f(x)+1的部分圖象如圖所示,且f(x0)=4,則f(x0+1)=( 。
A.6B.4C.-4D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知下列說法:
①命題“若x=0或y=0則xy=0”的否命題為“若x≠0或y≠0則xy≠0”;
②“a=2”是“直線ax+4y+1=0與直線ax-y-3=0垂直”的充要條件;
③命題“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0≤0”;
④函數(shù)f(x)=ex+x的零點在區(qū)間(-1,0)內(nèi).
其中正確說法的個數(shù)是( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某車間計劃生產(chǎn)甲、乙兩種產(chǎn)品,甲種產(chǎn)品每噸消耗A原料6噸、B原料4噸、C原料4噸,乙種產(chǎn)品每噸消耗A原料3噸、B原料12噸、C原料6噸.已知每天原料的使用限額為A原料240噸、B原料400噸、C原料240噸.生產(chǎn)甲種產(chǎn)品每噸可獲利900元,生產(chǎn)乙種產(chǎn)品每噸可獲利600元,分別用x,y表示每天生產(chǎn)甲、乙兩種產(chǎn)品的噸數(shù)
(Ⅰ)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)每天分別生甲、乙兩種產(chǎn)品各多少噸,才能使得利潤最大?并求出此最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知x>0,y>0,且x+16y=xy,則x+y的最小值為25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知F1,F(xiàn)2分別是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的兩個焦點,且|F1F2|=2,點$(\sqrt{2},\frac{{\sqrt{6}}}{2})$在該橢圓上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l與以原點為圓心,b為半徑的圓相切于第一象限,切點為M,且直線l與橢圓交于P、Q兩點,問|F2P|+|F2Q|+|PQ|是否為定值?如果是,求出定值;如不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ex
(Ⅰ)過原點作曲線y=f(x)的切線,求切線的方程;
(Ⅱ)當(dāng)x>0時,討論曲線y=f(x)與曲線y=mx2(m>0)公共點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知f(x)=ex-e,則曲線y=f(x)在點(1,f(1))處的切線方程是y=ex-e.

查看答案和解析>>

同步練習(xí)冊答案