已知定義在R上的函數(shù)f(x)滿足:f(x)=
x2+2 , x∈[0,1) 
2-x2,  x∈[-1,0)
且f(x+2)=f(x),g(x)=
2x+5
x+2
,則方程f(x)=g(x)在區(qū)間[-5,1]上的所有實(shí)根之和為(  )
A、-8B、-7C、-6D、0
考點(diǎn):分段函數(shù)的應(yīng)用
專題:計(jì)算題,數(shù)形結(jié)合,函數(shù)的性質(zhì)及應(yīng)用
分析:化簡(jiǎn)g(x)的表達(dá)式,得到g(x)的圖象關(guān)于點(diǎn)(-2,1)對(duì)稱,由f(x)的周期性,畫出f(x),g(x)的圖象,通過圖象觀察[-5,1]上的交點(diǎn)的橫坐標(biāo)的特點(diǎn),求出它們的和
解答: 解:由題意知g(x)=
2x+5
x+2
=2+
1
x+2
,函數(shù)f(x)的周期為2,
則函數(shù)f(x),g(x)在區(qū)間[-5,1]上的圖象如右圖所示:
由圖形可知函數(shù)f(x),g(x)在區(qū)間[-5,1]上的交點(diǎn)為A,B,C,易知點(diǎn)B的橫坐標(biāo)為-3,若設(shè)C的橫坐標(biāo)為t
(0<t<1),則點(diǎn)A的橫坐標(biāo)為-4-t,所以方程f(x)=g(x)在區(qū)間[-5,1]上的所有實(shí)數(shù)根之和為-3+(-4-t)+t=-7.
故選:B.
點(diǎn)評(píng):本題考查分段函數(shù)的圖象和運(yùn)用,考查函數(shù)的周期性、對(duì)稱性和應(yīng)用,同時(shí)考查數(shù)形結(jié)合的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖所示的程序框圖,若輸入a=
9
19
,則輸出的k值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面上,復(fù)數(shù)z=i(1-3i)對(duì)應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3ax(a∈R),若直線x+y+m=0對(duì)任意的m∈R都不是曲線y=f(x)的切線,則實(shí)數(shù)a的取值范圍是( 。
A、a>
1
3
或a<-
1
3
B、a<
1
3
C、a≠
1
3
D、a<-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足約束條件
x+y≥1
x-y≥-1
2x-y≤2
,則z=x+2y的最小值為(  )
A、
2
2
B、11
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,是假命題的是(  )
A、?x∈(0,
π
4
),cosx>sinx
B、?x∈R,sinx+cosx≠2
C、|
a
b
|=|
a
|•|
b
|
D、2 2log43=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i為虛數(shù)單位,若集X={x|x>i2},下列關(guān)系式中成立的為(  )
A、0⊆XB、{0}∈X
C、∅∈XD、{0}⊆X

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log2x2的圖象的大致形狀是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某運(yùn)輸公司運(yùn)輸貨物的價(jià)格規(guī)定是:如果運(yùn)輸里程不超過100km,運(yùn)費(fèi)是0.5元/km;如果超過100km,超過100km的部分按0.4元/km收費(fèi).
(1)請(qǐng)寫出運(yùn)費(fèi)y與里程數(shù)x之間的函數(shù)關(guān)系式;
(2)當(dāng)里程數(shù)是120km時(shí),運(yùn)費(fèi)是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案