7.小王參加單位組織的乒乓球比賽,在小組賽中將進(jìn)行三場(chǎng)比賽,假設(shè)小王在第一場(chǎng)比賽中獲勝的概率為$\frac{4}{5}$,第二、第三場(chǎng)獲勝的概率為m,n(m>n),且不同比賽場(chǎng)次是否獲勝相互獨(dú)立.記ξ為小王取得比賽勝利的次數(shù)且P(ξ=0)=$\frac{6}{125}$,P(ξ=3)=$\frac{24}{125}$
(1)求m,n的值;
(2)求數(shù)學(xué)期望Eξ

分析 (1)利用相互獨(dú)立事件的概率計(jì)算公式可得:P(ξ=0)=$\frac{1}{5}(1-m)(1-n)$=$\frac{6}{125}$,P(ξ=3)=$\frac{4}{5}$mn=$\frac{24}{125}$,解得m,n.
(2)利用相互獨(dú)立事件、互斥事件的概率計(jì)算公式可得分布列,即可得出數(shù)學(xué)期望.

解答 解:(1)由P(ξ=0)=$\frac{6}{125}$,P(ξ=3)=$\frac{24}{125}$,
得P(ξ=0)=$\frac{1}{5}(1-m)(1-n)$=$\frac{6}{125}$,P(ξ=3)=$\frac{4}{5}$mn=$\frac{24}{125}$,
解得m=$\frac{3}{5}$,n=$\frac{2}{5}$.
(2)ξ的可能取值為0,1,2,3.
P(ξ=1)=$\frac{4}{5}$(1-m)(1-n)+$\frac{1}{5}$m(1-n)+$\frac{1}{5}$(1-m)n=$\frac{37}{125}$,
P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=$\frac{58}{125}$.

ξ0123
P$\frac{6}{125}$$\frac{37}{125}$$\frac{58}{125}$$\frac{24}{125}$
Eξ=0×$\frac{6}{125}$+1×$\frac{37}{125}$+2×$\frac{58}{125}$+3×$\frac{24}{125}$=$\frac{9}{5}$.

點(diǎn)評(píng) 本題考查了相互獨(dú)立事件、互斥事件的概率計(jì)算公式、隨機(jī)變量的分布列與數(shù)學(xué)期望,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某中學(xué)一名數(shù)學(xué)老師對(duì)全班50名學(xué)生某次考試成績(jī)分男女生進(jìn)行了統(tǒng)計(jì)(滿分150分),其中120分(含120分)以上為優(yōu)秀,繪制了如下的兩個(gè)頻率分布直方圖:

(1)根據(jù)以上兩個(gè)直方圖完成下面的2×2列聯(lián)表:
成績(jī)性別優(yōu)秀不優(yōu)秀總計(jì)
男生
女生
總計(jì)
(2)根據(jù)(1)中表格的數(shù)據(jù)計(jì)算,你有多大把握認(rèn)為學(xué)生的數(shù)學(xué)成績(jī)與性別之間有關(guān)系?
附:${{K}^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d為樣本容量
k02.0722.7063.8415.0246.6357.87910.828
P(K2≥k00.150.100.050.0250.0100.0050.001
(3)若從成績(jī)?cè)赱130,140]的學(xué)生中任取2人,設(shè)取到的2人中女生的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.隨著霧霾日益嚴(yán)重,很多地區(qū)都實(shí)行了“限行”政策,現(xiàn)從某地區(qū)居民中,隨機(jī)抽取了300名居民了解他們對(duì)這一政策的態(tài)度,繪成如圖所示的2×2列聯(lián)表:
反對(duì)支持合計(jì)
男性7060
女性50120
合計(jì)
(1)試問(wèn)有沒(méi)有99%的把握認(rèn)為對(duì)“限行”政策的態(tài)度與性別有關(guān)?
(2)用樣本估計(jì)總體,把頻率作為概率,若從該地區(qū)所有的居民(人數(shù)很多)中隨機(jī)抽取3人,用ξ表示所選3人中反對(duì)的人數(shù),試寫出ξ的分布列,并求出ξ的數(shù)學(xué)期望.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+d)(a+c)(b+d)}$,其中n=a+b+c+d獨(dú)立性檢驗(yàn)臨界表:
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.對(duì)正整數(shù)n,記f(n)為數(shù)3n2+n+1用十進(jìn)制表示時(shí)各數(shù)位數(shù)字的和,如n=2時(shí),3n2+n+1=15,從而f(2)=6;n=10時(shí),3n2+n+1=311,從而f(10)=5.
(1)求f(7),f(8).
(2)求f(n)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)n∈N*,函數(shù)f(x)=$\frac{lnx}{{x}^{n}}$,函數(shù)g(x)=$\frac{{e}^{x}}{{x}^{n}}$,x∈(0,+∞),若曲線 y=f (x)與曲線 y=g(x)分別位于直線l:y=1的兩側(cè),則n的所有可能取值為1,2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.把“二進(jìn)制”數(shù)1011001(2)化為“十進(jìn)制”數(shù)是87.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)$f(x)={x^2}-\frac{{{ln}\left|x\right|}}{x}$,則函數(shù)y=f(x)的大致圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知f(x)=ax-lnx,x∈(0,e],其中e是自然常數(shù),a∈R.
(1)當(dāng)a=1時(shí),求f(x)的極值;
(2)若f(x)的最小值為3,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.下列命題中正確的序號(hào)是①⑤
①若$\overrightarrow{a}$與$\overrightarrow$為非零向量,且$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$+$\overrightarrow$必與$\overrightarrow{a}$或$\overrightarrow$的方向相同;
②若$\overrightarrow{e}$為單位向量,且$\overrightarrow{a}$∥$\overrightarrow{e}$,則$\overrightarrow{a}$=|$\overrightarrow{a}$|$\overrightarrow{e}$;
③$\overrightarrow{a}$•$\overrightarrow{a}$•$\overrightarrow{a}$=|$\overrightarrow{a}$|3;
④若$\overrightarrow{a}$與$\overrightarrow$共線,又$\overrightarrow$與$\overrightarrow{c}$共線,則$\overrightarrow{a}$與$\overrightarrow{c}$必共線;
⑤若平面內(nèi)有四點(diǎn)A,B,C,D,則必有$\overrightarrow{AC}$+$\overrightarrow{BD}$=$\overrightarrow{BC}$+$\overrightarrow{AD}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案