18.已知直線l1:$\left\{\begin{array}{l}x=t\\ y=\sqrt{3}t\end{array}$(t為參數(shù)),圓C1:(x-${\sqrt{3}$)2+(y-2)2=1,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立直角坐標(biāo)系.
(1)求圓C1的極坐標(biāo)方程,直線l1的極坐標(biāo)方程;
(2)設(shè)l1與C1的交點(diǎn)為M,N,求△C1MN的面積.

分析 (1)根據(jù)$\left\{\begin{array}{l}x=ρcosθ\\ y=ρsinθ\end{array}\right.$,求出極坐標(biāo)方程即可;(2)求出$|{{ρ_1}-{ρ_2}}|=\sqrt{3}$,從而求出三角形的面積即可.

解答 解:(1)因?yàn)?\left\{\begin{array}{l}x=ρcosθ\\ y=ρsinθ\end{array}\right.$,將其代入C1展開整理得:
${ρ^2}-2\sqrt{3}ρcosθ-4ρsinθ+6=0$,
∴圓C1的極坐標(biāo)方程為:${ρ^2}-2\sqrt{3}ρcosθ-4ρsinθ+6=0$,
l1消參得$tanθ=\sqrt{3}⇒θ=\frac{π}{3}$(ρ∈R),
∴直線l1的極坐標(biāo)方程為:$⇒θ=\frac{π}{3}$(ρ∈R).
(2)$\left\{\begin{array}{l}θ=\frac{π}{3}\\{ρ^2}-2\sqrt{3}ρcosθ-4ρsinθ+6=0\end{array}\right.$
⇒${ρ^3}-3\sqrt{3}ρ+6=0$⇒$|{{ρ_1}-{ρ_2}}|=\sqrt{3}$,
∴${S_{△{C_1}MN}}=\frac{1}{2}×\sqrt{3}×\frac{1}{2}=\frac{{\sqrt{3}}}{4}$.

點(diǎn)評(píng) 本題考查了參數(shù)方程和極坐標(biāo)方程以及普通方程的轉(zhuǎn)化,考查求三角形的面積,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)兩個(gè)變量x和y之間具有線性相關(guān)關(guān)系,它們的相關(guān)系數(shù)是r,y關(guān)于x的回歸直線方程的回歸系數(shù)是$\stackrel{∧}$,回歸截距是$\stackrel{∧}{a}$,那么必有( 。
A.$\stackrel{∧}$與r的符號(hào)相同B.$\stackrel{∧}{a}$與r的符號(hào)相反C.$\stackrel{∧}$與r的符號(hào)相反D.$\stackrel{∧}{a}$與r的符號(hào)相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知△ABC的頂點(diǎn)B、C在橢圓2x2+3y2=1上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另外一個(gè)焦點(diǎn)在BC邊上,則△ABC的周長(zhǎng)是2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow{a}$=(sinx,-cosx),$\overrightarrow$=($\sqrt{3}$cosx,cosx),設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求函數(shù)f(x)在(0,π)上的單調(diào)增區(qū)間;
(2)在△ABC中,已知a,b,c分別為角A,B,C的對(duì)邊,A為銳角,若f(A)=0,sin(A+C)=$\sqrt{3}$sinC,C=$\sqrt{3}$,求邊a的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)a為實(shí)數(shù),函數(shù)f(x)=x2e1-x-a(x-1).
(1)當(dāng)a=1時(shí),求f(x)在(${\frac{3}{2}$,2)上的最大值;
(2)設(shè)函數(shù)g(x)=f(x)+a(x-1-e1-x),當(dāng)g(x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2)時(shí),總有x2g(x1)≤λf'(x1),求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.下列所給關(guān)系正確的個(gè)數(shù)是2.
①π∈R;②$\sqrt{3}$∉Q;③0∈N*;④|-4|∉N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知P(-2,y)是角θ終邊上一點(diǎn),且sinθ=$\frac{{\sqrt{5}}}{5}$,則y=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)滿足:
①定義域?yàn)镽;
②?x∈R,有f(x+2)=f(x);
③當(dāng)?x∈[0,2]時(shí),f(x)=1-|x-1|.記φ(x)=f(x)-log8|x|(x∈R).根據(jù)以上信息,可以得到函數(shù)φ(x)的零點(diǎn)個(gè)數(shù)為(  )
A.14B.12C.8D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若點(diǎn)P(-3,4)在角α的終邊上,則cosα=( 。
A.$-\frac{3}{5}$B.$\frac{3}{5}$C.$-\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案