10.i是虛數(shù)單位,則$|{\frac{5+3i}{4-i}}|$等于$\sqrt{2}$.

分析 直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)$\frac{5+3i}{4-i}$,再由復(fù)數(shù)求模公式計(jì)算得答案.

解答 解:$\frac{5+3i}{4-i}=\frac{(5+3i)(4+i)}{(4-i)(4+i)}=\frac{17+17i}{17}=1+i$,
則$|{\frac{5+3i}{4-i}}|$=$\sqrt{2}$.
故答案為:$\sqrt{2}$.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|x+2|+|x-4|.
(1)求函數(shù)f(x)的最小值;
(2)若{x|f(x)≤t2-t}∩{x|-3≤x≤5}≠∅.求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知φ∈(0,π),且$tan(φ+\frac{π}{4})=-\frac{1}{3}$.
(Ⅰ)求tan2φ的值;
(Ⅱ)求$\frac{sinφ+cosφ}{2cosφ-sinφ}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=2tan(ωx+ϕ)$({ω>0,|ϕ|<\frac{π}{2}})$的最小正周期為$\frac{π}{2}$,且$f({\frac{π}{2}})=-2$,則ω=2,ϕ=-$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知二次函數(shù)f(x)=x2-2x+3
(Ⅰ)若函數(shù)$y=f({log_3}x+m),x∈[\frac{1}{3},3]$的最小值為3,求實(shí)數(shù)m的值;
(Ⅱ)若對(duì)任意互不相同的x1,x2∈(2,4),都有|f(x1)-f(x2)|<k|x1-x2|成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.直線x+2y-5+$\sqrt{15}$=0被圓x2+y2-2x-4y=0截得的弦長(zhǎng)為( 。
A.1B.2$\sqrt{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知圓心C的坐標(biāo)為(2,-2),圓C與x軸和y軸都相切
(1)求圓C的方程
(2)求與圓C相切,且在x軸和y軸上的截距相等的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.給定矩陣A=$[\begin{array}{l}{1}&{2}\\{2}&{3}\end{array}]$,B=$[\begin{array}{l}{-\frac{3}{2}}&{2}\\{1}&{-1}\end{array}]$,設(shè)橢圓$\frac{{x}^{2}}{4}$+y2=1在矩陣AB對(duì)應(yīng)的變換下得到曲線F,求F的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知f(x)=$\left\{\begin{array}{l}{{x}^{2},x∈[0,+∞)}\\{{x}^{3}+{a}^{2}-3a+2,x∈(-∞,0)}\end{array}\right.$在R上是增函數(shù),求實(shí)數(shù)α的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案