分析 求出AB,可得橢圓$\frac{{x}^{2}}{4}$+y2=1在矩陣AB對(duì)應(yīng)的變換下得到曲線F,即可求F的面積.
解答 解:由已知得$AB=[\begin{array}{l}1\\ 2\end{array}\right.\;\;\;\left.\begin{array}{l}2\\ 3\end{array}][\begin{array}{l}-\frac{3}{2}\;\;\;\;2\\ \;\;1\;\;\;\;\;-1\end{array}]=[\begin{array}{l}\frac{1}{2}\;\;\;\;0\\ \;0\;\;\;\;1\end{array}]$,
設(shè)P(x0,y0)為橢圓上任意一點(diǎn),點(diǎn)M在矩陣AB對(duì)應(yīng)的變換下變?yōu)辄c(diǎn)$P'({x_0}^′,{y_0}^′)$,
則有$[\begin{array}{l}\frac{1}{2}\;\;\;\;0\\ \;0\;\;\;\;1\end{array}][\begin{array}{l}{x_0}\\{y_0}\end{array}]=[\begin{array}{l}{x_0}^′\\{y_0}^′\end{array}]$,即$\left\{\begin{array}{l}\frac{1}{2}{x_0}={x_0}^′\\{y_0}={y_0}^′\end{array}\right.$,所以$\left\{\begin{array}{l}{x_0}=2{x_0}^′\\{y_0}={y_0}^′\end{array}\right.$,
又點(diǎn)P在橢圓上,故$\frac{{{x_0}^2}}{4}+{y_0}^2=1$,從而${({x_0}^′)^2}+{({y_0}^′)^2}=1$,
故曲線F的方程為x2+y2=1,其面積為π.
點(diǎn)評(píng) 本題考查矩陣與變換,考查圓的方程,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $-\frac{4}{3}$ | C. | $\frac{3}{4}$ | D. | $-\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 667 | B. | 668 | C. | 669 | D. | 673 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | 5 | C. | $-\frac{1}{5}$ | D. | -5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com