【題目】1取何值時,方程)無解?有一解?有兩解?有三解?

2)函數(shù)的性質通常指函數(shù)的定義域、值域、周期性、單調性、奇偶性等,請選擇適當?shù)奶骄宽樞,研究函?shù)的性質,并在此基礎上,作出其在的草圖;

【答案】1時,無解;時,有一解;時,有兩解;時,有三解;

2)定義域為,值域為,周期為,在為增函數(shù),在上為減函數(shù),偶函數(shù);作圖見解析

【解析】

1)令函數(shù),由,得的單調性和值域,由此得的何值范圍;

2先研究定義域、奇偶性、周期性,再研究函數(shù)的單調性、值域,最后畫出圖形.

1)令,,

,遞增,在遞減,

,,

綜上:時,無解;時,有一解;時,有兩解;時,有三解.

2)∵fx)的定義域為R;

,∴fx)為偶函數(shù);

fx+π)=+fx),∴fx)是周期為π的周期函數(shù);

時,fx)=,

∴當時,fx)單調遞減;當時,

fx)=

fx)單調遞增;又∵fx)是周期為π的偶函數(shù),

fx)在上單調遞增,在上單調遞減(kZ);

∵當時,;當時,.∴fx)的值域為;

由以上性質可得:fx)在[ππ]上的圖象如圖所示:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,底面,為線段的中點,若為線段上的動點(不含.

1)平面與平面是否互相垂直?如果是,請證明;如果不是,請說明理由;

2)求二面角的余弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于函數(shù),給出以下四個命題:(1)當時,單調遞減且沒有最值;(2)方程一定有實數(shù)解;(3)如果方程為常數(shù))有解,則解得個數(shù)一定是偶數(shù);(4是偶函數(shù)且有最小值.其中假命題的序號是____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知全集為,,定義集合的特征函數(shù)為,對于,,給出下列四個結論:

1)對任意,有

2)對任意,若,則

3)對任意,有

4)對任意,有

其中,正確的序號是_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某游戲棋盤上標有第、、站,棋子開始位于第站,選手拋擲均勻硬幣進行游戲,若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到跳到第站或第站時,游戲結束.設游戲過程中棋子出現(xiàn)在第站的概率為.

1)當游戲開始時,若拋擲均勻硬幣次后,求棋子所走站數(shù)之和的分布列與數(shù)學期望;

2)證明:

3)若最終棋子落在第站,則記選手落敗,若最終棋子落在第站,則記選手獲勝.請分析這個游戲是否公平.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且

)求數(shù)列的通項公式;

)若數(shù)列滿足,求數(shù)列的通項公式;

)在()的條件下,設,問是否存在實數(shù)使得數(shù)列是單調遞增數(shù)列?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于函數(shù)的對稱性有如下結論:對于給定的函數(shù),如果對于任意的都有成立為常數(shù)),則函數(shù)關于點對稱.

(1)用題設中的結論證明:函數(shù)關于點

(2)若函數(shù)既關于點對稱,又關于點對稱,且當時,,求:的值;

時,的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的值域是,有下列結論:①當時,; ②當時,;③當時,; ④當時,.其中結論正確的所有的序號是( )

A.①②B.③④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在邊長為的等邊三角形中,點分別是邊上的點,滿足,將沿直線折到的位置. 在翻折過程中,下列結論成立的是(

A.在邊上存在點,使得在翻折過程中,滿足平面

B.存在,使得在翻折過程中的某個位置,滿足平面平面

C.,當二面角為直二面角時,

D.在翻折過程中,四棱錐體積的最大值記為的最大值為

查看答案和解析>>

同步練習冊答案