【題目】關于函數,給出以下四個命題:(1)當時,單調遞減且沒有最值;(2)方程一定有實數解;(3)如果方程(為常數)有解,則解得個數一定是偶數;(4)是偶函數且有最小值.其中假命題的序號是____________.
科目:高中數學 來源: 題型:
【題目】已知焦點在x軸上的雙曲線C的兩條漸近線過坐標原點,且兩條漸近線與以點為圓心,1為半徑的圓相切,又知C的一個焦點與P關于直線對稱.
(1)求雙曲線C的方程;
(2)設直線與雙曲線C的左支交于A、B兩點,另一直線經過及AB的中點,求直線在y軸上的截距b的取值范圍;
(3)若Q是雙曲線C上的任一點,、為雙曲線C的左、右兩個焦點,從引的角平分線的垂線,垂足為N,試求點N的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】雙曲線繞坐標原點旋轉適當角度可以成為函數的圖象,關于此函數有如下四個命題:① 是奇函數;② 的圖象過點或;③ 的值域是;④ 函數有兩個零點;則其中所有真命題的序號為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線:的準線經過點.
(1)求拋物線的方程;
(2)設是原點,直線恒過定點,且與拋物線交于,兩點,直線與直線,分別交于點,.請問:是否存在以為直徑的圓經過軸上的兩個定點?若存在,求出兩個定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,是圓柱體的一條母線,過底面圓的圓心,是圓上不與、重合的任意一點,已知棱,,.
(1)求異面直線與平面所成角的大;
(2)將四面體繞母線旋轉一周,求三邊旋轉過程中所圍成的幾何體的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列1、1、2、1、2、4、1、2、4、8、1、2、4、8、16、…,其中第一項是,接下來的兩項是、,再接下來的三項是、、,以此類推,若且該數列的前項和為2的整數冪,則的最小值為( )
A.440B.330C.220D.110
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)取何值時,方程()無解?有一解?有兩解?有三解?
(2)函數的性質通常指函數的定義域、值域、周期性、單調性、奇偶性等,請選擇適當的探究順序,研究函數的性質,并在此基礎上,作出其在的草圖;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
(本題滿分15分)已知m>1,直線,
橢圓,分別為橢圓的左、右焦點.
(Ⅰ)當直線過右焦點時,求直線的方程;
(Ⅱ)設直線與橢圓交于兩點,,
的重心分別為.若原點在以線段
為直徑的圓內,求實數的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com