【題目】已知拋物線的準線經(jīng)過點.

1)求拋物線的方程;

2)設(shè)是原點,直線恒過定點,且與拋物線交于兩點,直線與直線,分別交于點,.請問:是否存在以為直徑的圓經(jīng)過軸上的兩個定點?若存在,求出兩個定點的坐標;若不存在,請說明理由.

【答案】(1)(2)存在,以為直徑的圓經(jīng)過軸上的兩個定點分別為

【解析】

(1)由題意首先求得p的值,然后確定拋物線方程即可;

(2)設(shè)出直線AB的方程,與拋物線方程聯(lián)立,結(jié)合韋達定理即可求得圓的方程,結(jié)合圓的方程即可確定圓是否過定點.

1)由于,故拋物線;

2)設(shè)直線,且,

聯(lián)立,由韋達定理知①,②,

由于直線,故點.直線,故點,

故以為直徑的圓的方程為,

,代入②知解得,.

故以為直徑的圓經(jīng)過軸上的兩個定點分別為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在①函數(shù)的圖象向右平移個單位長度得到的圖象,圖象關(guān)于原點對稱;②向量;③函數(shù)這三個條件中任選一個,補充在下面問題中,并解答.已知_________,函數(shù)的圖象相鄰兩條對稱軸之間的距離為

1)若,求的值;

2)求函數(shù)上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用一個長為,寬為的矩形鐵皮(如圖1)制作成一個直角圓形彎管(如圖3):先在矩形的中間畫一條曲線,并沿曲線剪開,將所得的兩部分分別卷成體積相等的斜截圓柱狀(如圖2),然后將其中一個適當翻轉(zhuǎn)拼接成直角圓形彎管(如圖3)(不計拼接損耗部分),并使得直角圓形彎管的體積最大;

1)求直角圓形彎管(圖3)的體積;

2)求斜截面橢圓的焦距;

3)在相應的圖1中建立適當?shù)淖鴺讼担顾嫷那的方程為,求出方程并畫出大致圖像;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面有五個命題:

①函數(shù)的最小正周期是

②終邊在軸上的角的集合是;

③在同一坐標系中,函數(shù)的圖象和函數(shù)的圖象有三個公共點;

④把函數(shù)的圖象向右平移個單位得到的圖象;

⑤函數(shù)上是減函數(shù);

其中真命題的序號是(  )

A.①②⑤B.①④C.③⑤D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某快遞公司在某市的貨物轉(zhuǎn)運中心,擬引進智能機器人分揀系統(tǒng),以提高分揀效率和降低物流成本,已知購買x臺機器人的總成本為萬元.

1)若使每臺機器人的平均成本最低,問應買多少臺?

2)現(xiàn)按(1)中的數(shù)量購買機器人,需要安排m人將郵件放在機器人上,機器人將郵件送達指定落袋格口完成分揀(如圖).經(jīng)實驗知,每臺機器人的日平均分揀量為,(單位:件).已知傳統(tǒng)的人工分揀每人每日的平均分揀量為1200件,問引進機器人后,日平均分揀量達最大時,用人數(shù)量比引進機器人前的用人數(shù)量最多可減少百分之幾?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關(guān)于函數(shù),給出以下四個命題:(1)當時,單調(diào)遞減且沒有最值;(2)方程一定有實數(shù)解;(3)如果方程為常數(shù))有解,則解得個數(shù)一定是偶數(shù);(4是偶函數(shù)且有最小值.其中假命題的序號是____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形是一個歷史文物展覽廳的俯視圖,點上,在梯形區(qū)域內(nèi)部展示文物,是玻璃幕墻,游客只能在區(qū)域內(nèi)參觀.在上點處安裝一可旋轉(zhuǎn)的監(jiān)控攝像頭.為監(jiān)控角,其中在線段(含端點)上,且點在點的右下方.經(jīng)測量得知:米,米,米,.記(弧度),監(jiān)控攝像頭的可視區(qū)域的面積為平方米.

(1)求關(guān)于的函數(shù)關(guān)系式,并寫出的取值范圍;(參考數(shù)據(jù):

(2)求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某游戲棋盤上標有第、、、、站,棋子開始位于第站,選手拋擲均勻硬幣進行游戲,若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到跳到第站或第站時,游戲結(jié)束.設(shè)游戲過程中棋子出現(xiàn)在第站的概率為.

1)當游戲開始時,若拋擲均勻硬幣次后,求棋子所走站數(shù)之和的分布列與數(shù)學期望;

2)證明:

3)若最終棋子落在第站,則記選手落敗,若最終棋子落在第站,則記選手獲勝.請分析這個游戲是否公平.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

已知幾何體A—BCED的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.

1)求此幾何體的體積V的大;

2)求異面直線DEAB所成角的余弦值;

查看答案和解析>>

同步練習冊答案