已知
a
、
b
的夾角為120°,且|
a
|=1,|2
a
+
b
|=2
3
,則|
b
|=( 。
A、3
2
B、2
2
C、4
D、2
考點:平面向量數(shù)量積的運算,向量的模
專題:平面向量及應(yīng)用
分析:首先利用向量的平方與其模的平方相等,將|2
a
+
b
|=2
3
兩邊平方,得到關(guān)于|
b
|的方程解之.
解答: 解:由已知,|2
a
+
b
|2=12,
所以4
a
2
+4
a
b
+
b
2
=12,又
a
、
b
的夾角為120°,且|
a
|=1,
所以4+4|
b
|
cos120°+|
b
|2
=12,解得|
b
|=4;
故選C.
點評:本題考查了向量的數(shù)量積以及向量的模;屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個電流瞬時值的函數(shù)表達式分別為 I1(t)=sint,I2(t)=sin(t+φ),|φ|<
π
2
,它們合成后的電流瞬時值的函數(shù) I(t)=I1(t)+I2(t)的部分圖象如圖所示,則 I(t)=
 
,φ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個命題中:
①從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進行某項指標檢測,這樣的抽樣是分層抽樣;
②若兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近于1;
③根據(jù)散點圖求得的回歸直線方程可能是沒有意義的;
④若某項測量結(jié)果ξ服從正態(tài)分布N(1,σ2),且P(ξ≤4)=0.9,則P(ξ≤-2)=0.1.
其中真命題的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點,過點F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點M,若點M在以線段F1F2為直徑的圓外,則雙曲線離心率的取值范圍是( 。
A、(1,
2
B、(
3
,+∞)
C、(
3
,2)
D、(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,圖中的四邊形都是邊長為1的正方形,其中正視圖、側(cè)視圖中的兩條虛線互相垂直,則該幾何體的體積是( 。
A、
5
6
B、
3
4
C、
1
2
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在實數(shù)集R中,我們定義的大小關(guān)系“>”為全體實數(shù)排了一個“序”類似的,我們在平面向量集D={
a
|
a
=(x,y),x∈R,y∈R}上也可以定義在一個稱“序”的關(guān)系,記為“>>”,定義如下:對于任意兩個向量
a1
=(x1,y1
a
2=(x2,y2),“
a
1>>
a
2”當且僅當“x1>x2”或“x1=x2”且“y1>y2”,按上述定義的關(guān)系“>>”給出如下四個命題:
①若
e
1=(1,0),
e
2=(0,1),
0
=(0,0),則
e
1>>
e
2>>
0

②若
a
1>>
a
2
a
2>>
a
3,則
a
1>>
a
3
③若
a
1>>
a
2,則對于任意
a
∈D,
a
1+
a
>>
a
2+
a

④對于任意向量
a
>>
0
0
=(0,0),若
a
1>>
a
2,則
a
a
1=
a
a
2
其中真命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個算法流程圖,則輸出的x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AO=2,B是半個單位圓上的動點,△ABC是等邊三角形,求當∠AOB等于多少時,四邊形OACB的面積最大,并求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、c為集合A={1,2,3,4,5}中三個不同的數(shù),通過如圖所示算法框圖給出的一個算法輸出一個整數(shù)a,則輸出的數(shù)a=5的概率是
 

查看答案和解析>>

同步練習(xí)冊答案