【題目】分類(lèi)變量X和Y的列聯(lián)表如下:
y1 | y2 | 總計(jì) | |
x1 | a | b | a+b |
x2 | c | d | c+d |
總計(jì) | a+c | b+d | a+b+c+d |
則下列說(shuō)法中正確的是( )
A.ad-bc越小,說(shuō)明X與Y關(guān)系越弱
B.ad-bc越大,說(shuō)明X與Y關(guān)系越強(qiáng)
C.(ad-bc)2越大,說(shuō)明X與Y關(guān)系越強(qiáng)
D.(ad-bc)2越接近于0,說(shuō)明X與Y關(guān)系越強(qiáng)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】心理學(xué)家通過(guò)研究學(xué)生的學(xué)習(xí)行為發(fā)現(xiàn);學(xué)生的接受能力與老師引入概念和描述問(wèn)題所用的時(shí)間相關(guān),教學(xué)開(kāi)始時(shí),學(xué)生的興趣激增,學(xué)生的興趣保持一段較理想的狀態(tài),隨后學(xué)生的注意力開(kāi)始分散,分析結(jié)果和實(shí)驗(yàn)表明,用f(x)表示學(xué)生掌握和接受概念的能力,x表示講授概念的時(shí)間(單位:min),可有以下的關(guān)系:f(x)=
(Ⅰ)開(kāi)講后第5min與開(kāi)講后第20min比較,學(xué)生的接受能力何時(shí)更強(qiáng)一些?
(Ⅱ)開(kāi)講后多少min學(xué)生的接受能力最強(qiáng)?能維持多少時(shí)間?
(Ⅲ)若一個(gè)新數(shù)學(xué)概念需要55以上(包括55)的接受能力以及13min時(shí)間,那么老師能否在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個(gè)概念?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), (其中為常數(shù), 為自然對(duì)數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸平行.
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若函數(shù)有兩個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(, )為奇函數(shù),且相鄰兩對(duì)稱(chēng)軸間的距離為.
(1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;
(2)將函數(shù)的圖象沿軸方向向右平移個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮短到原來(lái)的(縱坐標(biāo)不變),得到函數(shù)的圖象.當(dāng)時(shí),求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種大型商品,A,B兩地都有出售,且價(jià)格相同、某地居民從兩地之一購(gòu)得商品后運(yùn)回的費(fèi)用是:每單位距離A地的運(yùn)費(fèi)是B地的運(yùn)費(fèi)的3倍,已知A,B兩地距離為10千米,顧客選擇A或B地購(gòu)買(mǎi)這種商品的標(biāo)準(zhǔn)是:包括運(yùn)費(fèi)和價(jià)格的總費(fèi)用較低,求A,B兩地的售貨區(qū)域的分界線的曲線形狀,并指出曲線上、曲線內(nèi)、曲線外的居民應(yīng)如何選擇購(gòu)貨地點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),若在區(qū)間上的最小值為,求的取值范圍;
(2)若對(duì)任意, ,且恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,值域?yàn)椋?,+∞)的函數(shù)是( )
A.y=5
B.y=log2(3x+2)
C.y=
D.y=( )1﹣x
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(Ⅰ)設(shè)f(x)= ,求f(1+log23)的值;
(Ⅱ)已知g(x)=ln[(m2﹣1)x2﹣(1﹣m)x+1]的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備的使用年限x和支出的維修費(fèi)用y(萬(wàn)元),有如下表的統(tǒng)計(jì)資料:
使用年限x | 2 | 3 | 4 | 5 | 6 |
維修費(fèi)用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由資料知y對(duì)x呈線性相關(guān)關(guān)系,試求:
(1)線性回歸方程 .
(2)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少.
(3)計(jì)算總偏差平方和、殘差平方和及回歸平方和.
(4)求 并說(shuō)明模型的擬合效果.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com