【題目】已知函數(shù).
(1)當(dāng)時(shí),若在區(qū)間上的最小值為,求的取值范圍;
(2)若對(duì)任意, ,且恒成立,求的取值范圍.
【答案】(1);(2).
【解析】試題分析:(1)由題意當(dāng)a>0時(shí),求導(dǎo),令f′(x)=0,根據(jù)函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,分類討論,求得f(x)的最小值,求得a的取值范圍;
(2)設(shè)g(x)=f(x)+2x,求導(dǎo),令當(dāng)a=0時(shí),,g(x)在(0,+∞)上單調(diào)遞增,當(dāng)a≠0時(shí),只需g′(x)≥0在(0,+∞)上恒成立,根據(jù)二次函數(shù)的性質(zhì),即可求得a的取值范圍.
試題解析:
(1)函數(shù)的定義域是.當(dāng)時(shí),
,
令,得,
所以或.
當(dāng),即時(shí),在上單調(diào)遞增,所以在上的最小值是;
當(dāng)時(shí),在上的最小值是,不合題意;
當(dāng)時(shí),在上單調(diào)遞減, 在上的最小值是,
不合題意,
綜上:.
(2)設(shè),即,
只要在上單調(diào)遞增即可,而,
當(dāng)時(shí),,此時(shí)在上單調(diào)遞增;
當(dāng)時(shí),只需在上恒成立,因?yàn)?/span>,只要,
則需要,對(duì)于函數(shù),過(guò)定點(diǎn),對(duì)稱軸,只需
即,綜上,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù).
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?
參考公式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為, , .等 差數(shù)列中, ,且公差.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)是否存在正整數(shù),使得?.若存在,求出的最小值;若 不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】分類變量X和Y的列聯(lián)表如下:
y1 | y2 | 總計(jì) | |
x1 | a | b | a+b |
x2 | c | d | c+d |
總計(jì) | a+c | b+d | a+b+c+d |
則下列說(shuō)法中正確的是( )
A.ad-bc越小,說(shuō)明X與Y關(guān)系越弱
B.ad-bc越大,說(shuō)明X與Y關(guān)系越強(qiáng)
C.(ad-bc)2越大,說(shuō)明X與Y關(guān)系越強(qiáng)
D.(ad-bc)2越接近于0,說(shuō)明X與Y關(guān)系越強(qiáng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近幾年出現(xiàn)各種食品問(wèn)題,食品添加劑會(huì)引起血脂增高、血壓增高、血糖增高等疾病.為了解三高疾病是否與性別有關(guān),醫(yī)院隨機(jī)對(duì)入院的60人進(jìn)行了問(wèn)卷調(diào)查,得到了如下的列聯(lián)表:
患三高疾病 | 不患三高疾病 | 合計(jì) | |
男 | 6 | 30 | |
女 | |||
合計(jì) | 36 |
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式 ,其中 )
(1)請(qǐng)將如圖的列聯(lián)表補(bǔ)充完整;若用分層抽樣的方法在患三高疾病的人群中抽 人,其中女性抽多少人?
(2)為了研究三高疾病是否與性別有關(guān),請(qǐng)計(jì)算出統(tǒng)計(jì)量 ,并說(shuō)明你有多大的把握認(rèn)為三高疾病與性別有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),對(duì)任意x∈R,都有f(x+2)=f(x﹣2),且當(dāng)x∈[﹣2,0]時(shí),f(x)=( )x﹣1,若在區(qū)間(﹣2,6]內(nèi)關(guān)于x的方程f(x)﹣loga(x+2)=0(a>1)有3個(gè)不同的實(shí)數(shù)根,則a的取值范圍是( )
A.(1,2)
B.(2,+∞)
C.(1, )
D.( ,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在三棱錐A-BOC中,OA⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=,動(dòng)點(diǎn)D在線段AB上.
(1)求證:平面COD⊥平面AOB;
(2)當(dāng)OD⊥AB時(shí),求三棱錐C-OBD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形中, 點(diǎn)是邊的中點(diǎn),將沿折起,使平面平面,連接得到如圖所示的幾何體.
(1)求證; 平面;
(2)若二面角的平面角的正切值為求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com