A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | 2 |
分析 聯(lián)立方程求出A,B的坐標(biāo),結(jié)合△F1AB為等邊三角形,建立方程關(guān)系,進(jìn)行求解即可.
解答 解:當(dāng)x=c時(shí),$\frac{{c}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,得$\frac{{y}^{2}}{^{2}}$=$\frac{{c}^{2}}{{a}^{2}}$-1=$\frac{{c}^{2}-{a}^{2}}{{a}^{2}}$=$\frac{^{2}}{{a}^{2}}$,
則y2=$\frac{^{4}}{{a}^{2}}$,則y=±$\frac{^{2}}{a}$,
則A(c,$\frac{^{2}}{a}$),B(c,-$\frac{^{2}}{a}$),F(xiàn)1(-c,0),
∵△F1AB為等邊三角形,
∴∠AF1F2=30°即可,
則tan∠AF1F2=tan30°=$\frac{\frac{^{2}}{a}}{2c}$=$\frac{^{2}}{2ac}$=$\frac{\sqrt{3}}{3}$,即b2=$\frac{2\sqrt{3}}{3}$ac,
則c2-a2=$\frac{2\sqrt{3}}{3}$ac,
即c2-$\frac{2\sqrt{3}}{3}$ac-a2=0,
則e2-$\frac{2\sqrt{3}}{3}$e-1=0,
得e=$\sqrt{3}$,
故選:B
點(diǎn)評(píng) 本題主要考查雙曲線離心率的計(jì)算,根據(jù)條件求出交點(diǎn)坐標(biāo),結(jié)合三角形的邊角公式是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | $\frac{1}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{13}{25}$ | C. | $\frac{38}{75}$ | D. | $\frac{81}{125}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com