8.已知A(-1,0),B(3,2),C(0,-2),則過這三點(diǎn)的圓方程為( 。
A.(x-$\frac{3}{2}$)2+y2=25B.(x+$\frac{3}{2}$)2+y2=$\frac{1}{4}$C.(x-$\frac{3}{2}$)2+y2=$\frac{25}{4}$D.x2+(y-$\frac{3}{2}$)2=$\frac{5}{2}$

分析 根據(jù)題意,設(shè)要求圓的圓心為(a,b),半徑為r,結(jié)合題意由圓所過點(diǎn)的坐標(biāo)可得$\left\{\begin{array}{l}{(-1-a)^{2}+(0-{b)}^{2}={r}^{2}}\\{(3-a)^{2}+(2-b)^{2}={r}^{2}}\\{(0-a)^{2}+(-2-b)^{2}={r}^{2}}\end{array}\right.$,解可得a、b、r的值,將其值代入a、b、r中,即可得答案.

解答 解:根據(jù)題意,設(shè)要求圓的圓心為(a,b),半徑為r,
則圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,
又由圓過A(-1,0),B(3,2),C(0,-2)三點(diǎn),
則有$\left\{\begin{array}{l}{(-1-a)^{2}+(0-{b)}^{2}={r}^{2}}\\{(3-a)^{2}+(2-b)^{2}={r}^{2}}\\{(0-a)^{2}+(-2-b)^{2}={r}^{2}}\end{array}\right.$,
解可得:a=$\frac{3}{2}$,b=0,r=$\frac{5}{2}$,
則圓的標(biāo)準(zhǔn)方程為:(x-$\frac{3}{2}$)2+y2=$\frac{25}{4}$,
故選:C.

點(diǎn)評(píng) 本題考查圓的標(biāo)準(zhǔn)方程的計(jì)算,關(guān)鍵是求出圓心坐標(biāo)以及半徑.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.平面向量$\vec a,\vec b,\vec c$不共線,且兩兩所成的角相等,|$\overrightarrow a|=|\overrightarrow b|=2,|\overrightarrow c|=1$,$\overrightarrow m=\overrightarrow a-2017\overrightarrow c$,則$(\overrightarrow a-\overrightarrow b)•\overrightarrow m$=( 。
A.2B.$\sqrt{3}$C.$2\sqrt{3}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-2≤0}\\{2x-y+2≥0}\\{y≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=x-y的最小值等于( 。
A.-1B.-2C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.△ABC是底邊邊長為2$\sqrt{2}$的等腰直角三角形,P是以直角頂點(diǎn)C為圓心,半徑為1的圓上任意一點(diǎn),若m≤$\overrightarrow{AP}$•$\overrightarrow{PB}$≤n,則n-m的最小值為(  )
A.4$\sqrt{2}$B.2$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若命題p:已知0<a<1,?x<0,ax>1,則¬p為(  )
A.已知a>1,?x>0,ax≤1B.$已知0<a<1,?{x_0}<0,{a^{x_0}}≤1$
C.$已知0<a<1,?{x_0}≥0,{a^{x_0}}≤1$D.已知a>1,?x>0,ax≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an}滿足:a1=-2,a2=1,且an+1=-$\frac{1}{2}$(an+an+2),則{an}的前n項(xiàng)和Sn=$\left\{\begin{array}{l}{-k,n=2k}\\{k-3,n=2k-1}\end{array}\right.$(k∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知直線l經(jīng)過拋物線y2=4x的焦點(diǎn)F,且與拋物線交于A,B兩點(diǎn)(點(diǎn)A在第一象限)若$\overrightarrow{BA}=4\overrightarrow{BF}$,則△AOB的面積為(  )
A.$\frac{8}{3}\sqrt{3}$B.$\frac{4}{3}\sqrt{3}$C.$\frac{8}{3}\sqrt{2}$D.$\frac{4}{3}\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知命題p:?x∈(-∞,0),2x>3x;命題q:?x∈(0,$\frac{π}{2}$),sinx>x,則下列命題為真命題的是( 。
A.p∧qB.(¬p)∨qC.(¬p)∧qD.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a4=10,S4=28,數(shù)列$\left\{{\frac{1}{{{S_n}+2}}}\right\}$的前n項(xiàng)和為Tn,則T2017=$\frac{2017}{4038}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案