【題目】已知數(shù)列為等比數(shù)列,,公比為,且,為數(shù)列的前項(xiàng)和.
(1)若,求;
(2)若調(diào)換的順序后能構(gòu)成一個(gè)等差數(shù)列,求的所有可能值;
(3)是否存在正常數(shù),使得對(duì)任意正整數(shù),不等式總成立?若存在,求出的范圍,若不存在,請(qǐng)說(shuō)明理由.
【答案】(1) ;(2)或;(3).
【解析】
(1)運(yùn)用等比數(shù)列的通項(xiàng)公式,解方程可得公比,求和公式計(jì)算即可得到所求值;
(2)由等比數(shù)列的通項(xiàng)公式和等差數(shù)列中項(xiàng)的性質(zhì),解方程即可得到所求值;
(3)假設(shè)存在正常數(shù)c,q,使得對(duì)任意的正整數(shù)n,不等式總成立,由,即為,等價(jià)為,討論公比q,結(jié)合題意,推得存在,求得q的范圍.
(1)因?yàn)?/span>所以,所以或(舍去).
所以
(2)若或成等差數(shù)列,則,解得或1(舍去);若或成等差數(shù)列,
則,解得或1(舍去);若成等差數(shù)列,
則,解得(舍去).綜上,
(3)由,可得,故等價(jià)于恒成立.
因?yàn)?/span> 所以得到當(dāng)時(shí),不可能成立.
當(dāng)時(shí),另,得,解得
因?yàn)?/span>,所以即當(dāng)時(shí),,所以不可能成立.
當(dāng)時(shí),由,即,所以
即當(dāng)時(shí),不成立.當(dāng)時(shí),,
所以當(dāng)時(shí)恒成立,
綜上,存在正常數(shù),使得對(duì)任意正整數(shù)不等式總成立,的取值范圍為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知半徑為1的動(dòng)圓與定圓(x-5)2+(y+7)2=16相切,則動(dòng)圓圓心的軌跡方程是( )
A. (x-5)2+(y+7)2=25
B. (x-5)2+(y+7)2=3或(x-5)2+(y+7)2=15
C. (x-5)2+(y+7)2=9
D. (x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面上動(dòng)點(diǎn)M到直線x=﹣1的距離比它到點(diǎn)F(2,0)的距離少1.
(1)求動(dòng)點(diǎn)M的軌跡E的方程;
(2)已知點(diǎn)B(﹣1,0),設(shè)過(guò)點(diǎn)(1,0)的直線l與軌跡E交于不同的兩點(diǎn)P、Q,證明:x軸是∠PBQ的角平分線所在的直線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù)x,y滿足 ,則目標(biāo)函數(shù)2x+y的最大值為 , 目標(biāo)函數(shù)4x2+y2的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在(0,+∞)上的函數(shù)f(x)=a(x+ )﹣|x﹣ |(a∈R).
(1)當(dāng)a= 時(shí),求f(x)的單調(diào)區(qū)間;
(2)若f(x)≥ x對(duì)任意的x>0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+c與x軸交于A、B兩點(diǎn),頂點(diǎn)為C,點(diǎn)P在拋物線上,且位于x軸下方.
(1)如下圖,若P(1,-3)、B(4,0),① 求該拋物線的解析式;② 若D是拋物線上一點(diǎn),滿足∠DPO=∠POB,求點(diǎn)D的坐標(biāo);
(2) 如下圖,在圖中的拋物線解析式不變的條件下,已知直線PA、PB與y軸分別交于E、F兩點(diǎn).當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),OE+OF是否為定值?若是,試求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面有兩個(gè)關(guān)于“袋子中裝有紅、白兩種顏色的相同小球,從袋中無(wú)放回地取球”的游戲規(guī)則,這兩個(gè)游戲規(guī)則公平嗎?為什么?
游 戲 1 | 游 戲 2 |
2個(gè)紅球和2個(gè)白球 | 3個(gè)紅球和1個(gè)白球 |
取1個(gè)球,再取1個(gè)球 | 取1個(gè)球,再取1個(gè)球 |
取出的兩個(gè)球同色→甲勝 | 取出的兩個(gè)球同色→甲勝 |
取出的兩個(gè)球不同色→乙勝 | 取出的兩個(gè)球不同色→乙勝 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,AD=PD=2,PA=2 ,∠PDC=120°,點(diǎn)E為線段PC的中點(diǎn),點(diǎn)F在線段AB上.
(1)若AF= ,求證:CD⊥EF;
(2)設(shè)平面DEF與平面DPA所成二面角的平面角為θ,試確定點(diǎn)F的位置,使得cosθ= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了讓學(xué)生更多地了解“數(shù)學(xué)史”知識(shí),某班級(jí)舉辦一次“追尋先哲的足跡,傾聽(tīng)數(shù)學(xué)的聲音的數(shù)學(xué)史知識(shí)競(jìng)賽活動(dòng).現(xiàn)將初賽答卷成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表:
序號(hào) | 分?jǐn)?shù)段 | 人數(shù) | 頻率 |
1 | 10 | 0.20 | |
2 | ① | 0.44 | |
3 | ② | ③ | |
4 | 4 | 0.08 | |
合計(jì) | 50 | 1 |
(1)填充上述表中的空格(在解答中直接寫(xiě)出對(duì)應(yīng)空格序號(hào)的答案);
(2)若利用組中值近似計(jì)算數(shù)據(jù)的平均數(shù),求此次數(shù)學(xué)史初賽的平均成績(jī);
(3)甲同學(xué)的初賽成績(jī)?cè)?/span>,學(xué)校為了宣傳班級(jí)的學(xué)習(xí)經(jīng)驗(yàn),隨機(jī)抽取分?jǐn)?shù)在的4位同學(xué)中的兩位同學(xué)到學(xué)校其他班級(jí)介紹,求甲同學(xué)被抽取到的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com