【題目】拋物線y=ax2+c與x軸交于A、B兩點,頂點為C,點P在拋物線上,且位于x軸下方.
(1)如下圖,若P(1,-3)、B(4,0),① 求該拋物線的解析式;② 若D是拋物線上一點,滿足∠DPO=∠POB,求點D的坐標;
(2) 如下圖,在圖中的拋物線解析式不變的條件下,已知直線PA、PB與y軸分別交于E、F兩點.當點P運動時,OE+OF是否為定值?若是,試求出該定值;若不是,請說明理由.
【答案】(1)①;②或;(2).
【解析】
(1)①根據(jù)待定系數(shù)法求函數(shù)解析式,可得答案;
②根據(jù)平行線的判定,可得,根據(jù)函數(shù)值相等兩點關(guān)于對稱軸對稱,可得D點坐標;
(2)作于Q點,設(shè),可表示出的長,可得答案.
(1)①將P(1,-3)、B(4,0)代入y=ax2+c得
,解得 ,拋物線的解析式為: .
②如圖:
由∠DPO=∠POB得DP∥OB,D與P關(guān)于y軸對稱,P(1,-3)得D(-1,-3);
如圖,D在P右側(cè),即圖中D2,則∠D2PO=∠POB,延長PD2交x軸于Q,則QO=QP,
設(shè)Q(q,0),則(q-1)2+32=q2,解得:q=5,∴Q(5,0),則直線PD2為 ,
再聯(lián)立 得:x=1或 ,∴ D2( )
∴點D的坐標為(-1,-3)或( )
(2)過點P作PH⊥AB,設(shè)P(x,)有OH=x,PH=,
易證:△PAH∽△EAO,則 即,∴,
同理得∴,∴,則OE+OF=
∴OE+OF是定值,等于。
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線 (t為參數(shù),t∈R),曲線 (θ為參數(shù),θ∈[0,2π]).
(Ⅰ)以O(shè)為極點,x軸正半軸為極軸,取相同的長度單位建立極坐標系,求曲線C2的極坐標方程;
(Ⅱ)若曲線C1與曲線C2相交于點A、B,求|AB|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】輸入x,求函數(shù)y=的值的程序框圖如圖C17所示.
(1)指出程序框圖中的錯誤之處并寫出正確的算法步驟.
(2)重新繪制程序框圖,并回答下面提出的問題.
①要使輸出的值為7,則輸入的x的值應(yīng)為多少?
②要使輸出的值為正數(shù),則輸入的x應(yīng)滿足什么條件?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列為等比數(shù)列,,公比為,且,為數(shù)列的前項和.
(1)若,求;
(2)若調(diào)換的順序后能構(gòu)成一個等差數(shù)列,求的所有可能值;
(3)是否存在正常數(shù),使得對任意正整數(shù),不等式總成立?若存在,求出的范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,設(shè)動點到兩定點, 的距離的比值為的軌跡為曲線.
(Ⅰ)求曲線的方程;
(Ⅱ)若直線過點,且點到直線的距離為,求直線的方程,并判斷直線與曲線的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知O為坐標原點,P為雙曲線 ﹣y2=1(a>0)上一點,過P作兩條漸近線的平行線交點分別為A,B,若平行四邊形OAPB的面積為 ,則雙曲線的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: +y2=1與直線l:y=kx+m相交于E、F兩不同點,且直線l與圓O:x2+y2= 相切于點W(O為坐標原點).
(1)證明:OE⊥OF;
(2)設(shè)λ= ,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的右準線方程為,又離心率為,橢圓的左頂點為,上頂點為,點為橢圓上異于任意一點.
(1)求橢圓的方程;
(2)若直線與軸交于點,直線與軸交于點,求證: 為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com