【題目】拋物線y=ax2+c與x軸交于A、B兩點,頂點為C,點P在拋物線上,且位于x軸下方

(1)如下圖,若P(1,-3)、B(4,0),① 求該拋物線的解析式;② 若D是拋物線上一點,滿足∠DPO=∠POB,求點D的坐標;

(2) 如下圖,在圖中的拋物線解析式不變的條件下,已知直線PA、PB與y軸分別交于E、F兩點.當點P運動時,OE+OF是否為定值?若是,試求出該定值;若不是,請說明理由

【答案】(1);;(2).

【解析】

(1)根據(jù)待定系數(shù)法求函數(shù)解析式,可得答案;

根據(jù)平行線的判定,可得根據(jù)函數(shù)值相等兩點關(guān)于對稱軸對稱,可得D點坐標;

(2)作Q點,設(shè)可表示出的長,可得答案.

(1)①將P(1,-3)、B(4,0)代入y=ax2+c得

,解得 ,拋物線的解析式為:

如圖:

∠DPO=∠POB得DPOB,D與P關(guān)于y軸對稱,P(1,-3)得D(-1,-3);

如圖,D在P右側(cè),即圖中D2,則∠D2PO=∠POB,延長PD2交x軸于Q,則QO=QP,

設(shè)Q(q,0),則(q-1)2+32=q2,解得:q=5,Q(5,0),則直線PD2 ,

再聯(lián)立 得:x=1或 ,∴ D2

點D的坐標為(-1,-3)或(

(2)過點P作PH⊥AB,設(shè)P(x,OH=x,PH=,

易證:△PAH∽△EAO,則 ,∴,

同理得,∴,則OE+OF=

∴OE+OF是定值,等于。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線 (t為參數(shù),t∈R),曲線 (θ為參數(shù),θ∈[0,2π]).
(Ⅰ)以O(shè)為極點,x軸正半軸為極軸,取相同的長度單位建立極坐標系,求曲線C2的極坐標方程;
(Ⅱ)若曲線C1與曲線C2相交于點A、B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】輸入x,求函數(shù)y=的值的程序框圖如圖C17所示.

(1)指出程序框圖中的錯誤之處并寫出正確的算法步驟.

(2)重新繪制程序框圖,并回答下面提出的問題.

①要使輸出的值為7,則輸入的x的值應(yīng)為多少?

②要使輸出的值為正數(shù),則輸入的x應(yīng)滿足什么條件?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,正方形與直角梯形所在平面互相垂直, , ,

(I)求證: 平面

(II)求證: 平面

(III)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列為等比數(shù)列,,公比為,且,為數(shù)列的前項和.

(1)若,求;

(2)若調(diào)換的順序后能構(gòu)成一個等差數(shù)列,求的所有可能值;

(3)是否存在正常數(shù),使得對任意正整數(shù),不等式總成立?若存在,求出的范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,設(shè)動點到兩定點 的距離的比值為的軌跡為曲線

(Ⅰ)求曲線的方程;

(Ⅱ)若直線過點,且點到直線的距離為,求直線的方程,并判斷直線與曲線的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知O為坐標原點,P為雙曲線 ﹣y2=1(a>0)上一點,過P作兩條漸近線的平行線交點分別為A,B,若平行四邊形OAPB的面積為 ,則雙曲線的離心率為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: +y2=1與直線l:y=kx+m相交于E、F兩不同點,且直線l與圓O:x2+y2= 相切于點W(O為坐標原點).
(1)證明:OE⊥OF;
(2)設(shè)λ= ,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的右準線方程為,又離心率為,橢圓的左頂點為,上頂點為,點為橢圓上異于任意一點.

(1)求橢圓的方程;

(2)若直線軸交于點,直線軸交于點,求證: 為定值.

查看答案和解析>>

同步練習冊答案