(本小題滿分12分)
已知數(shù)列和等比數(shù)列,的前n項(xiàng)和為,
且滿足,;
(1)求數(shù)列的通項(xiàng)公式和等比數(shù)列的通項(xiàng)公式
(2)求數(shù)列的前n項(xiàng)和與等比數(shù)列的前n項(xiàng)和。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知數(shù)列{an}的前三項(xiàng)與數(shù)列{bn}的前三項(xiàng)對(duì)應(yīng)相等,且a1+2a2+22a3+…+2n-1an=8n對(duì)任意的n∈N*都成立,數(shù)列{bn+1bn}是等差數(shù)列.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)是否存在k∈N*,使得bkak∈(0,1)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
數(shù)列{an}是等差數(shù)列,
(1)求通項(xiàng)公式an
(2)若,求數(shù)列的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
數(shù)列{an}是等差數(shù)列,,,,其中,數(shù)列{an}前n項(xiàng)和存在最小值。
(1)求通項(xiàng)公式an
(2)若,求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)設(shè)數(shù)列的前n項(xiàng)和為Sn=2n2為等比數(shù)列,且(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等差數(shù)列中,其前n項(xiàng)和,則n=__

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

數(shù)列的前n項(xiàng)的和Sn=3n2+ n,則此數(shù)列的通項(xiàng)公式a n=__       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列{n}的通項(xiàng)公式n =log2() (n∈N*),其前n項(xiàng)之和為Sn,則使Sn<-5成立的正整數(shù)n的最小值是_______    ___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

n2(n≥3)個(gè)正整數(shù)1,2,3,…,n2填入n×n方格中,使得每行、每列、每條對(duì)角線上的數(shù)的和相等,這個(gè)正方形就叫做n階幻方,記f(n)為n階幻方對(duì)角線上數(shù)的和。如下表所示
8
1
6
3
5
7
4
9
2
 
就是一個(gè)3階幻方,可知f(3)=15,則f(n)=                       (  )
A.n(n2+1)B.n2(n+1)-3C.n2(n2+1) D.n(n2+1)

查看答案和解析>>

同步練習(xí)冊(cè)答案