【題目】如圖,四棱錐中,底面為菱形,,平面底面上的一點(diǎn).

1)證明:平面平面;

2)若直線平面,且,求直線與平面所成角的大小.

【答案】1)詳見解析;(2.

【解析】

1)利用面面垂直的性質(zhì)定理得出平面,再由面面垂直的判定定理證明平面平面

2)設(shè)交于點(diǎn),連接,由線面平行的性質(zhì)以及中位線定理得出點(diǎn)中點(diǎn),再由勾股定理以及面面垂直的性質(zhì)得出底面,進(jìn)而得出為直線與平面所成角,再由直角三角的邊角關(guān)系得出直線與平面所成角.

1)因?yàn)榈酌?/span>為菱形,所以

又平面底面底面

所以平面

平面

所以平面平面.

2)設(shè)交于點(diǎn),連接

直線平面,平面,平面平面

所以,即點(diǎn)中點(diǎn),

, ,則為等腰直角三角形,則,

因?yàn)槠矫?/span>底面,則底面

又因?yàn)?/span>,則底面

為直線與平面所成角.

底面為菱形, ,則.

所以,故.

則直線與平面所成角的大小為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)武漢于20191018日至20191027日成功舉辦了第七屆世界軍人運(yùn)動(dòng)會(huì).來自109個(gè)國(guó)家的9300余名運(yùn)動(dòng)員同臺(tái)競(jìng)技.經(jīng)過激烈的角逐,獎(jiǎng)牌榜的前3名如下:

國(guó)家

金牌

銀牌

銅牌

獎(jiǎng)牌總數(shù)

中國(guó)

133

64

42

239

俄羅斯

51

53

57

161

巴西

21

31

36

88

某數(shù)學(xué)愛好者采用分層抽樣的方式,從中國(guó)和巴西獲得金牌選手中抽取了22名獲獎(jiǎng)代表.從這22名中隨機(jī)抽取3人, 則這3人中中國(guó)選手恰好1人的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,其中.

1)當(dāng)時(shí),求函數(shù)單調(diào)遞增區(qū)間;

2)求函數(shù)的圖象在點(diǎn)處的切線方程;

3)是否存在實(shí)數(shù)的值,使得上有最大值或最小值,若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟(jì)的發(fā)展,個(gè)人收入的提高,自201911日起,個(gè)人所得稅起征點(diǎn)和稅率的調(diào)整,調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應(yīng)納稅所得額,依照個(gè)人所得稅稅率表,調(diào)整前后的計(jì)算方法如下表:

個(gè)人所得稅稅率表(調(diào)整前)

個(gè)人所得稅稅率表(調(diào)整后)

免征額3500

免征額5000

級(jí)數(shù)

全月應(yīng)納稅所得額

稅率(%

級(jí)數(shù)

全月應(yīng)納稅所得額

稅率(%

1

不超過1500元部分

3

1

不超過3000元部分

3

2

超過1500元至4500元的部分

10

2

超過3000元至12000元的部分

10

3

超過4500元至9000元的部分

20

3

超過12000元至25000元的部分

20

某稅務(wù)部門在某公司利用分層抽樣方法抽取某月100個(gè)不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:

收入(元)

人數(shù)

30

40

10

8

7

5

1)若某員工2月的工資、薪金等稅前收入為7500元時(shí),請(qǐng)計(jì)算一下調(diào)整后該員工的實(shí)際收入比調(diào)整前增加了多少?

2)現(xiàn)從收入在的人群中按分層抽樣抽取7人,再?gòu)闹羞x4人作為新納稅法知識(shí)宣講員,用表示抽到作為宣講員的收入在元的人數(shù),表示抽到作為宣講員的收入在元的人數(shù),設(shè)隨機(jī)變量,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】)恰有1個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為(

A.B.C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)的左、右頂點(diǎn)分別為A,B,左焦點(diǎn)為FO為原點(diǎn),點(diǎn)P為橢圓C上不同于AB的任一點(diǎn),若直線PAPB的斜率之積為,且橢圓C經(jīng)過點(diǎn).

1)求橢圓C的方程;

2)若P點(diǎn)不在坐標(biāo)軸上,直線PA,PBy軸于M,N兩點(diǎn),若直線OT與過點(diǎn)M,N的圓G相切.切點(diǎn)為T,問切線長(zhǎng)是否為定值,若是,求出定值,若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】世界互聯(lián)網(wǎng)大會(huì)是由中國(guó)倡導(dǎo)并每年在浙江省嘉興市桐鄉(xiāng)烏鎮(zhèn)舉辦的世界性互聯(lián)網(wǎng)盛會(huì),大會(huì)旨在搭建中國(guó)與世界互聯(lián)互通的國(guó)際平臺(tái)和國(guó)際互聯(lián)網(wǎng)共享共治的中國(guó)平臺(tái),讓各國(guó)在爭(zhēng)議中求共識(shí)在共識(shí)中謀合作在合作中創(chuàng)共贏.20191020日至22日,第六屆世界互聯(lián)網(wǎng)大會(huì)如期舉行,為了大會(huì)順利召開,組委會(huì)特招募了1 000名志愿者.某部門為了了解志愿者的基本情況,調(diào)查了其中100名志愿者的年齡,得到了他們年齡的中位數(shù)為34歲,年齡在歲內(nèi)的人數(shù)為15,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:

1)求,的值并估算出志愿者的平均年齡(同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);

2)這次大會(huì)志愿者主要通過現(xiàn)場(chǎng)報(bào)名和登錄大會(huì)官網(wǎng)報(bào)名,即現(xiàn)場(chǎng)和網(wǎng)絡(luò)兩種方式報(bào)名調(diào)查.100位志愿者的報(bào)名方式部分?jǐn)?shù)據(jù)如下表所示,完善下面的表格,通過計(jì)算說明能

否在犯錯(cuò)誤的概率不超過0.001的前提下,認(rèn)為選擇哪種報(bào)名方式與性別有關(guān)系”?

男性

女性

總計(jì)

現(xiàn)場(chǎng)報(bào)名

50

網(wǎng)絡(luò)報(bào)名

31

總計(jì)

50

參考公式及數(shù)據(jù):,其中.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一張坐標(biāo)紙上一已作出圓及點(diǎn),折疊此紙片使與圓周上某點(diǎn)重合,每次折疊都會(huì)留下折痕,設(shè)折痕與直線的交點(diǎn)為,令點(diǎn)的軌跡為.

(1)求軌跡的方程

(2)若直線與軌跡交于兩個(gè)不同的點(diǎn),且直線與以為直徑的圓相切,的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險(xiǎn)公司有一款保險(xiǎn)產(chǎn)品的歷史收益率(收益率利潤(rùn)保費(fèi)收入)的頻率分布直方圖如圖所示:

(1)試估計(jì)這款保險(xiǎn)產(chǎn)品的收益率的平均值;

(2)設(shè)每份保單的保費(fèi)在20元的基礎(chǔ)上每增加元,對(duì)應(yīng)的銷量為(萬份).從歷史銷售記錄中抽樣得到如下5組的對(duì)應(yīng)數(shù)據(jù):

25

30

38

45

52

銷量為(萬份)

7.5

7.1

6.0

5.6

4.8

由上表,知有較強(qiáng)的線性相關(guān)關(guān)系,且據(jù)此計(jì)算出的回歸方程為

(。┣髤(shù)的值;

(ⅱ)若把回歸方程當(dāng)作的線性關(guān)系,用(1)中求出的收益率的平均值作為此產(chǎn)品的收益率,試問每份保單的保費(fèi)定為多少元時(shí)此產(chǎn)品可獲得最大利潤(rùn),并求出最大利潤(rùn).注:保險(xiǎn)產(chǎn)品的保費(fèi)收入每份保單的保費(fèi)銷量.

查看答案和解析>>

同步練習(xí)冊(cè)答案