【題目】據(jù)市場(chǎng)調(diào)查發(fā)現(xiàn),某種產(chǎn)品在投放市場(chǎng)的30天中,其銷售價(jià)格(元)和時(shí)間(天)的關(guān)系如圖所示.

(1)求銷售價(jià)格(元)和時(shí)間(天)的函數(shù)關(guān)系式;

(2)若日銷售量(件)與時(shí)間(天)的函數(shù)關(guān)系式是 ,問(wèn)該產(chǎn)品投放市場(chǎng)第幾天時(shí),日銷售額(元)最高,且最高為多少元?

【答案】;()在第10天時(shí),日銷售額最大,最大值為900元.

【解析】

試題()通過(guò)討論t的范圍,求出函數(shù)的表達(dá)式即可;()先求出函數(shù)的表達(dá)式,通過(guò)討論t的范圍,求出函數(shù)的最大值即可.

解:(當(dāng)0≤t20t∈N時(shí),

設(shè)P=at+b,將(0,20),(20,40)代入,得解得

所以P=t+200≤t20,t∈N).

當(dāng)20≤t≤30t∈N時(shí),

設(shè)P=at+b,將(20,40),(30,30)代入,解得

所以 P=﹣t+6020≤t≤30,t∈N),)

綜上所述

)依題意,有y=PQ,

化簡(jiǎn)得

整理得

當(dāng)0≤t20,t∈N時(shí),由y=﹣t﹣102+900可得,當(dāng)t=10時(shí),y有最大值900元.

當(dāng)20≤t≤30,t∈N時(shí),由y=t﹣502﹣100可得,當(dāng)t=20時(shí),y有最大值800元.

因?yàn)?900800,所以在第10天時(shí),日銷售額最大,最大值為900元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,已知a≠b,cos2A﹣cos2B= sinAcosA﹣ sinBcosB. (Ⅰ)求角C的大小;
(Ⅱ)若c= ,siniA= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)為了提高當(dāng)?shù)氐胤浇?jīng)濟(jì)總量,決定引進(jìn)資金對(duì)原有的兩個(gè)企業(yè)進(jìn)行改造,計(jì)劃每年對(duì)兩個(gè)企業(yè)共投資500萬(wàn)元,要求對(duì)每個(gè)企業(yè)至少投資50萬(wàn)元.根據(jù)已有經(jīng)驗(yàn),改造后企業(yè)的年收益(單位:萬(wàn)元)和企業(yè)的年收益(單位:萬(wàn)元)與投入資金(單位:萬(wàn)元)分別滿足關(guān)系式:.設(shè)對(duì)企業(yè)投資額為(單位:萬(wàn)元),每年兩個(gè)企業(yè)的總收益為(單位:萬(wàn)元).

(1)求;

(2)試問(wèn)如何安排兩個(gè)企業(yè)的投入資金,才能使兩個(gè)企業(yè)的年總收益達(dá)到最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1=2an+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Sn為數(shù)列{ }的前n項(xiàng)和,求證:1≤Sn<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)滿足,且上為增函數(shù),,則不等式的解集為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若非零向量 與向量 的夾角為鈍角, ,且當(dāng) 時(shí), (t∈R)取最小值 .向量 滿足 ,則當(dāng) 取最大值時(shí), 等于(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正三棱錐S﹣ABC中,AB= ,M是SC的中點(diǎn),AM⊥SB,則正三棱錐S﹣ABC外接球的球心到平面ABC的距離為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)k為常數(shù),e為自然對(duì)數(shù)的底數(shù)),曲線在點(diǎn)(1, f (1))處的切線與x軸平行.

(1)求k的值;

(2)求的單調(diào)區(qū)間;

(3)設(shè)其中的導(dǎo)函數(shù),證明:對(duì)任意

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】古希臘亞歷山大時(shí)期的數(shù)學(xué)家帕普斯(Pappus,約300~約350)在《數(shù)學(xué)匯編》第3卷中記載著一個(gè)定理:“如果同一平面內(nèi)的一個(gè)閉合圖形的內(nèi)部與一條直線不相交,那么該閉合圖形圍繞這條直線旋轉(zhuǎn)一周所得到的旋轉(zhuǎn)體的體積等于閉合圖形面積乘以重心旋轉(zhuǎn)所得周長(zhǎng)的積.”如圖,半圓的直徑,點(diǎn)是該半圓弧的中點(diǎn),半圓弧與直徑所圍成的半圓面(陰影部分不含邊界)的重心位于對(duì)稱軸上.若半圓面繞直徑所在直線旋轉(zhuǎn)一周,則所得到的旋轉(zhuǎn)體的體積為__________,___________________

查看答案和解析>>

同步練習(xí)冊(cè)答案