6.某校100名學(xué)生期中考試物理成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中物理成績(jī)的眾數(shù)及a的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生物理成績(jī)的平均分和中位數(shù)(中位數(shù)要求精確到小數(shù)點(diǎn)后一位).

分析 (1)頻率最大的組中值,即為眾數(shù),各組的累積頻率為1,可得a的值;
(2)累加各組組中值與頻率的乘積可估得平均分,均為圖中矩形面積,可估得中位數(shù).

解答 解:(1)眾數(shù)是65…(2分)
依題意得,10(2a+0.02+0.03+0.04)=1,
解得a=0.005…(4分)
(2)這100名學(xué)生物理成績(jī)的平均分為:
55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73(分)…(7分)
設(shè)中位數(shù)為70+x分,則由0.005×10+0.04×10+0.03x=0.5
解得$x=\frac{5}{3}≈1.7$,所以這100名學(xué)生物理成績(jī)的中位數(shù)約為71.7.…(10分)

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是頻率分布直方圖,眾數(shù),中位數(shù),平均數(shù)的計(jì)算,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.甲、乙兩校各有3名教師報(bào)名支教,其中甲校2男1女,乙校1男2女,若從這6名教師中任選2名,選出的2名教師來(lái)自同一學(xué)校的概率為( 。
A.$\frac{5}{9}$B.$\frac{4}{9}$C.$\frac{3}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a1+a2+a3=a4+a5,S5=60,則a10=( 。
A.16B.20C.24D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.過(guò)雙曲線${x^2}-\frac{y^2}{2}=1$的一個(gè)焦點(diǎn)作直線交雙曲線于A、B兩點(diǎn),若|AB|=4,則這樣的直線有( 。
A.4條B.3條C.2條D.1條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.根據(jù)國(guó)家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過(guò)35微克/立方米,PM2.5的24小時(shí)平均濃度不得超過(guò)75微克/立方米.我市環(huán)保局隨機(jī)抽取了一居民區(qū)2016年20天PM2.5的24小時(shí)平均濃度(單位:微克/立方米)的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如表
組別PM2.5濃度
(微克/立方米)
頻數(shù)(天)頻率
  第一組(0,25]30.15
第二組(25,50]120.6
第三組(50,75]30.15
第四組(75,100]20.1
(1)從樣本中PM2.5的24小時(shí)平均濃度超過(guò)50微克/立方米的天數(shù)中,隨機(jī)抽取2天,求恰好有一天PM2.5的24小時(shí)平均濃度超過(guò)75微克/立方米的概率;
(2)將這20天的測(cè)量結(jié)果按上表中分組方法繪制成的樣本頻率分布直方圖如圖.
①求圖中a的值;
②求樣本平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某市文化部門為了了解本市市民對(duì)當(dāng)?shù)氐胤綉蚯欠裣矏郏瑥?5-65歲的人群中隨機(jī)抽樣了n人,得到如下的統(tǒng)計(jì)表和頻率分布直方圖.
(Ⅰ)寫出其中的a、b及x和y的值;
(Ⅱ)若從第1,2,3組回答喜歡地方戲曲的人中用分層抽樣的方法抽取6人,求這三組每組分別抽取多少人?
(Ⅲ)在(Ⅱ)抽取的6人中隨機(jī)抽取2人,求這2人中沒有第3組人的概率.
組號(hào)分組喜愛人數(shù)喜愛人數(shù)
占本組的頻率
第1組[15,25)a0.10
第2組[25,35)b0.20
第3組[35,45)60.20
第4組[45,55)120.60
第5組[55,65]200.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知全集U={2,3,x2+2x-3},集合A={2,|x+7|},且有∁UA={5},求滿足條件的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為4,過(guò)焦點(diǎn)且垂直于x軸的弦長(zhǎng)為2$\sqrt{2}$.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過(guò)橢圓E右焦點(diǎn)的直線l交橢圓于點(diǎn)M,N,設(shè)橢圓的左焦點(diǎn)為F,求$\overrightarrow{FM}$•$\overrightarrow{FN}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的漸近線與拋物線$y=\frac{1}{2}{x^2}+2$相切,則該雙曲線的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案