【題目】定義在(﹣1,1)上的函數(shù)f(x)滿足:f(x)﹣f(y)=f( ),當(dāng)x∈(﹣1,0)時(shí),有f(x)>0;若P=f( )+f( ),Q=f( ),R=f(0);則P,Q,R的大小關(guān)系為

【答案】R>P>Q
【解析】解:∵定義在(﹣1,1)上的函數(shù)f(x)滿足:f(x)﹣f(y)=f( ),∴令x=y,則f(x)﹣f(x)=f(0),即f(0)=0,
令x=0,則f(0)﹣f(y)=f(﹣y),即f(﹣y)=﹣f(y),
∴f(x)在(﹣1,1)是奇函數(shù),
∵當(dāng)x∈(﹣1,0)時(shí),有f(x)>0,
∴當(dāng)x∈(0,1)時(shí),有f(x)<0.
令x= ,y= ,則f( )﹣f( )=f( )=f( ),
∴f( )+f( )=f( )﹣f( )+f( )﹣f( )=f( )﹣f( ),
∴P﹣Q=﹣f( )>0,P>Q,
∵P,Q<0,
∴R>P>Q.
所以答案是:R>P>Q.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x﹣1.
(1)求f(3)+f(﹣1);
(2)求f(x)的解析式;
(3)若x∈A,f(x)∈[﹣7,3],求區(qū)間A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,且滿足, 為常數(shù).

1是否存在數(shù)列,使得?若存在,寫出一個(gè)滿足要求的數(shù)列;若不存在,說(shuō)明理由.

2)當(dāng)時(shí),求證:

3)當(dāng)時(shí),求證:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中, 底面, 上一點(diǎn)

(1)證明: 平面;

, ,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)滿足:
①對(duì)任意實(shí)數(shù)m,n都有f(m+n)+f(m﹣n)=2f(m)f(n);
②對(duì)任意m∈R,都有f(1+m)=f(1﹣m)恒成立;
③f(x)不恒為0,且當(dāng)0<x<1時(shí),f(x)<1.
(1)求f(0),f(1)的值;
(2)判斷函數(shù)f(x)的奇偶性,并給出你的證明;
(3)定義:“若存在非零常數(shù)T,使得對(duì)函數(shù)g(x)定義域中的任意一個(gè)x,均有g(shù)(x+T)=g(x),則稱g(x)為以T為周期的周期函數(shù)”.試證明:函數(shù)f(x)為周期函數(shù),并求出 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知y=f(x)(x∈R)是偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2﹣2x.
(1)求f(x)的解析式;
(2)若不等式f(x)≥mx在1≤x≤2時(shí)都成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái)我國(guó)電子商務(wù)行業(yè)迎來(lái)發(fā)展的新機(jī)遇,2016年雙11期間,某購(gòu)物平臺(tái)的銷售業(yè)

績(jī)高達(dá)1207億人民幣。與此同時(shí),相關(guān)管理部門推出了針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系,現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為0.9,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為140次.

(1)請(qǐng)完成下表,并判斷是否可以在犯錯(cuò)誤概率不超過(guò)0.5%的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?

(2)若將頻率視為概率,某人在該購(gòu)物平臺(tái)上進(jìn)行的3次購(gòu)物中,設(shè)對(duì)商品和服務(wù)全好評(píng)的次數(shù)為隨機(jī)變量

求對(duì)商品和服務(wù)全好評(píng)的次數(shù)的分布列;

的數(shù)學(xué)期望和方差.

,其中

對(duì)服務(wù)好評(píng)

對(duì)服務(wù)不滿意

合計(jì)

對(duì)商品好評(píng)

140

對(duì)商品不滿意

10

合計(jì)

200

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,將曲線 (α為參數(shù))上的每一點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的一半,然后整個(gè)圖象向右平移1個(gè)單位,最后橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉?lái)的2倍得到曲線C1 . 以坐標(biāo)原點(diǎn)為極點(diǎn),x的非負(fù)半軸為極軸,建立的極坐標(biāo)中的曲線C2的方程為ρ=4sinθ,求C1和C2公共弦的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了在冬季供暖時(shí)減少能量損耗,房屋的屋頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元,該建筑物每年的能源消耗費(fèi)用(單位:萬(wàn)元)與隔熱層厚度(單位:)滿足關(guān)系:,若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元,設(shè)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.

(1)求的值及的表達(dá)式;

(2)隔熱層修建多厚時(shí),總費(fèi)用達(dá)到最小,并求最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案