【題目】如圖拋物線的焦點為,為拋物線上一點(軸上方),,點到軸的距離為4.

1)求拋物線方程及點的坐標;

2)是否存在軸上的一個點,過點有兩條直線,滿足,交拋物線兩點.與拋物線相切于點不為坐標原點),有成立,若存在,求出點的坐標.若不存在,請說明理由.

【答案】1,; 2)存在點.

【解析】

1)由拋物線的定義,可得,且,求得,即可得到拋物線的方程,進而得到A點的坐標;

2)設(shè)的方程為,聯(lián)立方程組,由,解得

得到,再由的方程為,聯(lián)立方程組,求得,,結(jié)合,即可得到結(jié)論.

1)由拋物線的焦點為,滿足,點到軸的距離為4,由拋物線的定義,可得,且,解得,

所以拋物線的方程為,

,解得,

又由軸上方,所以,即.

2)假設(shè)存在點M,可知直線的斜率存在,

設(shè)的方程為,

聯(lián)立方程組,整理得,

,解得

此時切點,可得,

因為,所以的方程為,

聯(lián)立,整理得,

所以,

可得,,解得,

所以存在點,符合題意.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,底面,點的中點,點為點關(guān)于直線的對稱點,,.

1)求證:平面平面

2)直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線lxy0將圓O分成的兩部分的面積之比為( )

A.(4π):(8π)B.(4π3):(8π+3)

C.(2π2):(10π+2)D.(2π3):(10π+3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,多面體中,四邊形是矩形,已知,,,二面角的大小為

(1)求證:平面;

(2)點在線段上,設(shè),若二面角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,其中常數(shù)

)若,求的取值范圍;

)若,求證:對于任意的,均有;

)當常數(shù)時,設(shè),若存在實數(shù)使得恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中,,,以為軸將旋轉(zhuǎn),形成三棱錐

(Ⅰ)求證:

(Ⅱ)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】依法納稅是公民應(yīng)盡的義務(wù),隨著經(jīng)濟的發(fā)展,個人收入的提高,自2018101日起,個人所得稅起征點和稅率進行了調(diào)整,調(diào)整前后的計算方法如下表,20181222日國務(wù)院又印發(fā)了《個人所得稅專項附加扣除暫行辦法》(以下簡稱《辦法》),自201911日起施行,該《辦法》指出,個人所得稅專項附加扣除,是指個人所得稅法規(guī)定的子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息或者住房租金、贍養(yǎng)老人等6項專項附加扣除.簡單來說,2018101日之前,應(yīng)納稅所得額稅前收入險金基本減除費用(統(tǒng)一為3500)”依法扣除的其他扣除費用”;201911日起,應(yīng)納稅所得額稅前收人險金基本減除費用(統(tǒng)一為5000)”專項附加扣除費用依法扣除的其他扣除費用.

調(diào)整前后個人所得稅稅率表如下:

個人所得稅稅率表(調(diào)整前)

個人所得稅稅率表(調(diào)整后)

級數(shù)

全月應(yīng)納稅所得額

稅率(%

級數(shù)

全月應(yīng)納稅所得額

稅率(%

1

不超過1500元的部分

3

1

不超過3000元的部分

3

2

超過1500元至4500元的部分

10

2

超過3000元至12000元的部分

10

3

超過4500元至9000元的部分

20

3

超過12000元至25000元的部分

20

某稅務(wù)部門在小李所在公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,扣除險金后,制成下面的頻數(shù)分布表:

收入(元)

人數(shù)

10

20

25

20

15

10

)估算小李公司員工該月扣除險金后的平均收入為多少?

)若小李在該月扣除險金后的收入為10000元,假設(shè)小李除住房租金一項專項扣除費用1500元外,無其他依法扣除費用,則201911日起小李的個人所得稅,比2018101日之前少交多少?

)先從收入在[9000,11000)[11000,13000)的人群中按分層抽樣抽取7人,再從中選2人作為新納稅法知識宜講員,求兩個宣講員不全是同一收入人群的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足,an+23an+12ana11,a23,記bn,Sn為數(shù)列{bn}的前n項和.

1)求證:{an+1an}為等比數(shù)列,并求an;

2)求證:Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列、滿足,,

)求證:

)設(shè)數(shù)列的前項和為,求證:;

)設(shè)數(shù)列的前項和為,求證:當時,

查看答案和解析>>

同步練習(xí)冊答案