【題目】如圖,在各棱長(zhǎng)均為2的三棱柱中,側(cè)面底面ABC,.
(1)求側(cè)棱與平面所成角的正弦值的大。
(2)已知點(diǎn)D滿足,在直線上是否存在點(diǎn)P,使DP∥平面?若存在,請(qǐng)確定點(diǎn)P的位置,若不存在,請(qǐng)說明理由.
【答案】(1)(2)恰好為點(diǎn).
【解析】
(1)建立空間直角坐標(biāo)系,求出AA1向量,平面AA1C1C的法向量,然后求出側(cè)棱AA1與平面AB1C所成角的正弦值的大;
(2)在(1)的前提下,求出,設(shè)出P的坐標(biāo),使DP∥平面AB1C,即與法向量共線,再求出P的坐標(biāo).
(1)∵側(cè)面底面ABC,作A1O⊥AC于點(diǎn)O,
∴平面.
又,且各棱長(zhǎng)都相等,
∴,,.
故以O為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系O-xyz,
則,,,,
∴,,.
設(shè)平面的法向量為
則,取,得.
設(shè)側(cè)棱AA1與平面AB1C所成角的為θ,
則,
∴側(cè)棱與平面所成角的正弦值為.
(2)∵,而,
∴,又∵,∴點(diǎn).
假設(shè)存在點(diǎn)P符合題意,則點(diǎn)P的坐標(biāo)可設(shè)為,∴
∵DP∥平面,為平面的法向量,∴,得z=,
又由,得,∴.
又平面,故存在點(diǎn)P,使DP∥平面,其坐標(biāo)為,
即恰好為點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有200人參加了一次會(huì)議,為了了解這200人參加會(huì)議的體會(huì),將這200人隨機(jī)號(hào)為001,002,003,…,200,用系統(tǒng)抽樣的方法(等距離)抽出20人,若編號(hào)為006,036,041,176, 196的5個(gè)人中有1個(gè)沒有抽到,則這個(gè)編號(hào)是( )
A. 006B. 041C. 176D. 196
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱中,底面,底面是梯形,AB//DC,,
(1).求證:平面平面;
(2)求二面角的平面角的正弦值
(3).在線段上是否存在一點(diǎn),使AP//平面.若存在,請(qǐng)確定點(diǎn)的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為了解下屬某部門對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這50名職工對(duì)該部門的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為
(1)求頻率分布直方圖中的值;
(2)估計(jì)該企業(yè)的職工對(duì)該部門評(píng)分不低于80的概率;
(3)從評(píng)分在的受訪職工中,隨機(jī)抽取2人,求此2人評(píng)分都在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)已知橢圓的離心率為,橢圓C的長(zhǎng)軸長(zhǎng)為4.
(1)求橢圓C的方程;
(2)已知直線與橢圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)k使得以線段AB 為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線與直線平行,求的值;
(2)討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利用隨機(jī)模擬的方法可以估計(jì)圓周率的值,為此設(shè)計(jì)如圖所示的程序框圖,其中表示產(chǎn)生區(qū)間上的均勻隨機(jī)數(shù)(實(shí)數(shù)),若輸出的結(jié)果為786,則由此可估計(jì)的近似值為( )
A. 3.134 B. 3.141 C. 3.144 D. 3.147
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,,,,點(diǎn)為棱的中點(diǎn).
(Ⅰ)證明:;
(Ⅱ)若點(diǎn)為棱上一點(diǎn),且,求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com