16.在銳角△ABC中,2asinB=b.
(Ⅰ)求∠A的大小;
(Ⅱ)求$\sqrt{3}$sinB-cos(C+$\frac{π}{6}$)的取值范圍.

分析 (Ⅰ)利用正弦定理化簡已知的等式,根據(jù)sinB不為0得出sinA的值,由A為銳角三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出A的度數(shù).
(Ⅱ)先化簡,再求出角C的范圍,根據(jù)正弦函數(shù)的圖象即可求出

解答 解:(Ⅰ)利用正弦定理化簡b=2asinB,得:sinB=2sinAsinB,
∵sinB≠0,
∴sinA=$\frac{1}{2}$,
∵A為銳角,
∴A=$\frac{π}{6}$.
(Ⅱ)∵$\sqrt{3}sinB-cos(C+\frac{π}{6})$=$\sqrt{3}$sin($\frac{5π}{6}$-C)-cos(C+$\frac{π}{6}$)=$\sqrt{3}$sin(C+$\frac{π}{6}$)-cos(C+$\frac{π}{6}$)=2sinC,
又∵A=$\frac{π}{6}$,△ABC為銳角三角形,可得:$\frac{π}{3}$<C<$\frac{π}{2}$,
∴$\frac{\sqrt{3}}{2}$<sinC<1,
∴$\sqrt{3}sinB-cos(C+\frac{π}{6})$=2sinC∈($\sqrt{3}$,2).

點評 此題考查了正弦定理,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知x,y滿足:$\left\{{\begin{array}{l}{x≥0}\\{x+y≤2}\\{x-y≤0}\end{array}}\right.$,若目標(biāo)函數(shù)z=ax+y取最大值時的最優(yōu)解有無數(shù)多個,則實數(shù)a的值是( 。
A.0B.-1C.±1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={x|x>0},函數(shù)$f(x)=\sqrt{(2-x)(x-3)}$的定義域為集合B,則A∩B=(  )
A.[3,+∞)B.[2,3]C.(0,2]∪[3,+∞)D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.點P(x,y)的坐標(biāo)滿足約束條件$\left\{\begin{array}{l}x-2y≥0\\ x+2y+4≥0\\ 7x+2y-8≤0\end{array}\right.$,由點P向圓C:(x+2)2+(y-1)2=1作切線PA,切點為A,則線段|PA|的最小值為( 。
A.$\frac{{4\sqrt{5}}}{5}$B.$\frac{{\sqrt{55}}}{5}$C.$\sqrt{19}$D.$\frac{{\sqrt{33}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.將函數(shù)f(x)=2cos2x的圖象向右平移$\frac{π}{6}$個單位得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間$[0,\frac{a}{3}]$和$[2a,\frac{7π}{6}]$上均單調(diào)遞增,則實數(shù)a的取值范圍是[$\frac{π}{3}$,$\frac{π}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,利用隨機模擬的方法可以估計圖中由曲線y=$\frac{{x}^{2}}{2}$與兩直線x=2及y=0所圍成的陰
影部分的面積S
①利用計算機先產(chǎn)生N組均勻隨機數(shù)(xi,yi)(i=1,2,3,…N),xi∈[0,2],yi∈[0,2]
②生成N個點(xi,yi),并統(tǒng)計滿足條件yi<$\frac{{{x}_{i}}^{2}}{2}$的點的個數(shù)N1,已知某同學(xué)用計算機做模擬試驗結(jié)果,當(dāng)N=1000時,N1=332,則據(jù)此可估計S的值為1.328.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.復(fù)數(shù)${(1-i)^2}+\frac{2}{1-i}$的共軛復(fù)數(shù)是(  )
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)定義在R上的奇函數(shù),當(dāng)x<0時,f(x)=ex(x+1),給出下列命題:
①當(dāng)x>0時,f(x)=ex(1-x)
②函數(shù)f(x)有2個零點
③f(x)>0的解集為(-1,0)∪(1,+∞)
④?x1,x2∈R,都有|f(x1)-f(x2)|<2
其中正確命題個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=|x-a|+|x-3|.
(1)當(dāng)a=3是,解不等式f(x)≥4+|x-3|-|x-1|;
(2)若不等式f(x)≤1+|x-3|的解集為[1,3],$\frac{1}{m}$+$\frac{1}{2n}$=a(m>0,n>0).
       求證:m+2n≥2.

查看答案和解析>>

同步練習(xí)冊答案