【題目】已知橢圓過點,且離心率為.
(I)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點.若直線上存在點,使得四邊形是平行四邊形,求的值.
科目:高中數(shù)學 來源: 題型:
【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5 kg,乙材料1 kg,用5個工時;生產(chǎn)一件產(chǎn)品B需要甲材料0.5 kg,乙材料0.3 kg,用3個工時,生產(chǎn)一件產(chǎn)品A的利潤為2100元,生產(chǎn)一件產(chǎn)品B的利潤為900元.該企業(yè)現(xiàn)有甲材料150 kg,乙材料90 kg,則在不超過600個工時的條件下,生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤之和的最大值為______元.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(且)
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)當時,設(shè),若有兩個相異零點,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大型娛樂場有兩種型號的水上摩托,管理人員為了了解水上摩托的使用及給娛樂城帶來的經(jīng)濟收入情況,對該場所最近6年水上摩托的使用情況進行了統(tǒng)計,得到相關(guān)數(shù)據(jù)如表:
(1)請根據(jù)以上數(shù)據(jù),用最小二乘法求水上摩托使用率關(guān)于年份代碼的線性回歸方程,并預(yù)測該娛樂場2018年水上摩托的使用率;
(2)隨著生活水平的提高,外出旅游的老百姓越來越多,該娛樂場根據(jù)自身的發(fā)展需要,準備重新購進一批水上摩托,其型號主要是目前使用的Ⅰ型、Ⅱ型兩種,每輛價格分別為1萬元、1.2萬元.根據(jù)以往經(jīng)驗,每輛水上摩托的使用年限不超過四年.娛樂場管理部對已經(jīng)淘汰的兩款水上摩托的使用情況分別抽取了50輛進行統(tǒng)計,使用年限如條形圖所示:
已知每輛水上摩托從購入到淘汰平均年收益是0.8萬元,若用頻率作為概率,以每輛水上摩托純利潤(純利潤=收益-購車成本)的期望值為參考值,則該娛樂場的負責人應(yīng)該選購Ⅰ型水上摩托還是Ⅱ型水上摩托?
附:回歸直線方程為,其中, .參考數(shù)據(jù),
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列結(jié)論錯誤的是( )
A. 命題“若x2-3x-4=0,則x=4”的逆否命題是“若x≠4,則x2-3x-4≠0”
B. 命題“若m>0,則方程x2+x-m=0有實根”的逆命題為真命題
C. “x=4”是“x2-3x-4=0”的充分條件
D. 命題“若m2+n2=0,則m=0且n=0”的否命題是“若m2+n2≠0,則m≠0或n≠0”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex-e-x(x∈R,且e為自然對數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的單調(diào)性與奇偶性;
(2)是否存在實數(shù)t,使不等式f(x-t)+f(x2-t2)≥0對一切x∈R都成立?若存在,求出t;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知曲線,曲線的左右焦點是, ,且就是的焦點,點是與的在第一象限內(nèi)的公共點且,過的直線分別與曲線、交于點和.
(Ⅰ)求點的坐標及的方程;
(Ⅱ)若與面積分別是、,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com