【題目】如圖,已知曲線,曲線的左右焦點是, ,就是的焦點,的在第一象限內(nèi)的公共點且的直線分別與曲線、交于點

(Ⅰ)求點的坐標(biāo)及的方程

(Ⅱ)若面積分別是、,的取值范圍

【答案】(Ⅰ)(Ⅱ)

【解析】試題分析:(Ⅰ)由,設(shè),據(jù)題意有,可求出點的坐標(biāo),將點的坐標(biāo)代入橢圓方程,結(jié)合,列方程組,解出的值即可得結(jié)果;(Ⅱ)易知,當(dāng)不垂直于軸時,設(shè)的方程是,聯(lián)立,得,根據(jù)韋達(dá)定理以及拋物線焦半徑公式可得,聯(lián)立得: ,根據(jù)韋達(dá)定理及弦長公式可得 ,結(jié)合斜率不存在的情況可得結(jié)果.

試題解析:(Ⅰ) ,設(shè),據(jù)題意有

, ,

在橢圓上及就是的焦點,解之得 ,

所以的方程是

或由計算出,從而得方程.

(Ⅱ)易知,當(dāng)不垂直于軸時,設(shè)的方程是,

聯(lián)立,, ,

設(shè), ,,

聯(lián)立 ,

,

設(shè),

,

,

(或

當(dāng)垂直于軸時,易知 ,此時,

綜上有的取值范圍是

設(shè)類似給分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點,且離心率為

(I)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于兩點.若直線上存在點,使得四邊形是平行四邊形,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列中,若是整數(shù),且,且).

(Ⅰ)若, ,寫出的值;

(Ⅱ)若在數(shù)列的前2018項中,奇數(shù)的個數(shù)為,求得最大值;

(Ⅲ)若數(shù)列中, 是奇數(shù), ,證明:對任意 不是4的倍數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)axln(x1),其中a為常數(shù).

(1)試討論f(x)的單調(diào)區(qū)間;

(2)當(dāng)a時,存在x使得不等式成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,在四邊形ABCD, , 是邊長為4的正三角形,把沿AC折起到的位置,使得平面PAC平面ACD,如圖乙所示,分別為棱的中點.

1求證: 平面;

2求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題12分如圖,在海岸線一側(cè)有一休閑游樂場,游樂場的前一部分邊界為曲線段,該曲線段是函數(shù),的圖像,圖像的最高點為邊界的中間部分為長千米的直線段,且游樂場的后一部分邊界是以為圓心的一段圓弧

1求曲線段的函數(shù)表達(dá)式;

2曲線段上的入口距海岸線最近距離為千米,現(xiàn)準(zhǔn)備從入口修一條筆直的景觀路到,求景觀路長;

3如圖,在扇形區(qū)域內(nèi)建一個平行四邊形休閑區(qū),平行四邊形的一邊在海岸線上,一邊在半徑上,另外一個頂點在圓弧上,且,求平行四邊形休閑區(qū)面積的最大值及此時的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,求函數(shù)的極值;

(2)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;

(3)若在區(qū)間不存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,

(1)求 的值;

(2)試猜想的表達(dá)式(用一個組合數(shù)表示),并證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來鄭州空氣污染較為嚴(yán)重,現(xiàn)隨機(jī)抽取一年(365天)內(nèi)100天的空氣中指數(shù)的監(jiān)測數(shù)據(jù),統(tǒng)計結(jié)果如下:

空氣質(zhì)量

優(yōu)

輕微污染

輕度污染

中度污染

中度重污染

重度污染

天數(shù)

4

13

18

30

9

11

15

記某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失為 (單位:元), 指數(shù)為.當(dāng)在區(qū)間內(nèi)時對企業(yè)沒有造成經(jīng)濟(jì)損失;當(dāng)在區(qū)間內(nèi)時對企業(yè)造成經(jīng)濟(jì)損失成直線模型(當(dāng)指數(shù)為150時造成的經(jīng)濟(jì)損失為500元,當(dāng)指數(shù)為200 時,造成的經(jīng)濟(jì)損失為700元);當(dāng)指數(shù)大于300時造成的經(jīng)濟(jì)損失為2000元.

非重度污染

重度污染

合計

供暖季

非供暖季

合計

100

(1)試寫出的表達(dá)式;

(2)試估計在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失大于500元且不超過900元的概率;

(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面列聯(lián)表,并判斷是否有的把握認(rèn)為鄭州市本年度空氣重度污染與供暖有關(guān)?

查看答案和解析>>

同步練習(xí)冊答案