【題目】已知函數.
(Ⅰ)求函數的單調區(qū)間與極值;
(Ⅱ)若不等式對任意恒成立,求實數的取值范圍;
(Ⅲ)求證:.
科目:高中數學 來源: 題型:
【題目】[選修4-4:極坐標與參數方程]
在直角坐標系中,曲線的參數方程為(是參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的極坐標方程和曲線的直角坐標方程;
(2)若射線 與曲線交于,兩點,與曲線交于,兩點,求取最大值時的值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正項數列的前項和為,對任意,點都在函數的圖象上.
(1)求數列的通項公式;
(2)若數列,求數列的前項和;
(3)已知數列滿足,若對任意,存在使得成立,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了保障全國第四次經濟普查順利進行,國家統(tǒng)計局從東部選擇江蘇, 從中部選擇河北. 湖北,從西部選擇寧夏, 從直轄市中選擇重慶作為國家綜合試點地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū).在普查過程中首先要進行宣傳培訓,然后確定對象,最后入戶登記. 由于種種情況可能會導致入戶登記不夠順利,這為正式普查提供了寶貴的試點經驗. 在某普查小區(qū),共有 50 家企事業(yè)單位,150 家個體經營戶,普查情況如下表所示:
普查對象類別 | 順利 | 不順利 | 合計 |
企事業(yè)單位 | 40 | 10 | 50 |
個體經營戶 | 100 | 50 | 150 |
合計 | 140 | 60 | 200 |
(1)寫出選擇 5 個國家綜合試點地區(qū)采用的抽樣方法;
(2)根據列聯表判斷是否有的把握認為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關”;
(3)以頻率作為概率, 某普查小組從該小區(qū)隨機選擇 1 家企事業(yè)單位,3 家個體經營戶作為普查對象,入戶登記順利的對象數記為, 寫出的分布列,并求的期望值.
附:
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.88 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數與燒開一壺水所用時間的一組數據,且作了一定的數據處理(如下表),得到了散點圖(如下圖).
表中,.
(1)根據散點圖判斷,與哪一個更適宜作燒水時間關于開關旋鈕旋轉的弧度數的回歸方程類型?(不必說明理由)
(2)根據判斷結果和表中數據,建立關于的回歸方程;
(3)若單位時間內煤氣輸出量與旋轉的弧度數成正比,那么,利用第(2)問求得的回歸方程知為多少時,燒開一壺水最省煤氣?
附:對于一組數據,其回歸直線的斜率和截距的最小二乘法估計值分別為,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某品牌餐飲公司準備在10個規(guī)模相當的地區(qū)開設加盟店,為合理安排各地區(qū)加盟店的個數,先在其中5個地區(qū)試點,得到試點地區(qū)加盟店個數分別為1,2,3,4,5時,單店日平均營業(yè)額(萬元)的數據如下:
加盟店個數(個) | 1 | 2 | 3 | 4 | 5 |
單店日平均營業(yè)額(萬元) | 10.9 | 10.2 | 9 | 7.8 | 7.1 |
(1)求單店日平均營業(yè)額(萬元)與所在地區(qū)加盟店個數(個)的線性回歸方程;
(2)根據試點調研結果,為保證規(guī)模和效益,在其他5個地區(qū),該公司要求同一地區(qū)所有加盟店的日平均營業(yè)額預計值總和不低于35萬元,求一個地區(qū)開設加盟店個數的所有可能取值;
(3)小趙與小王都準備加入該公司的加盟店,根據公司規(guī)定,他們只能分別從其他五個地區(qū)(加盟店都不少于2個)中隨機選一個地區(qū)加入,求他們選取的地區(qū)相同的概率.
(參考數據及公式:,,線性回歸方程,其中,.)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com