【題目】如圖,在正四棱柱ABCD-A1B1C1D1中,已知底面ABCD的邊長(zhǎng)AB3,側(cè)棱AA12E是棱CC1的中點(diǎn),點(diǎn)F滿足2.

1)求異面直線FEDB1所成角的余弦值;

2)記二面角E-B1F-A的大小為θ,求|cosθ|.

【答案】1.2.

【解析】

1)先根據(jù)題意建立空間直角坐標(biāo)系,求得向量和向量的坐標(biāo),再利用線線角的向量方法求解.

2)先求得平面B1FE的一個(gè)法向量,易知平面AB1F的一個(gè)法向量,再利用面面角的向量方法求解.

1 在正四棱柱ABCDA1-B1C1D1中,

為正交基底,建立如圖所示的空間直角坐標(biāo)系D-xyz.

因?yàn)?/span>AB3,AA12,

ECC1的中點(diǎn), 2

所以E(0,3,1),F(3,20),B1(33,2).

從而(3,1,1)(3,3,2)

設(shè)異面直線FEDB1所成的角為α,

cosα|cos,|.

因此,異面直線FEDB1所成角的余弦值為.

2)設(shè)平面B1FE的法向量為(x,y,)

因?yàn)?/span>(3,1,1),(01,2)

所以

z=-3,則平面B1FE的一個(gè)法向量為(16,-3)

又因?yàn)槠矫?/span>AB1F的一個(gè)法向量為(1,0,0)

所以cos,〉=.

因此cosθ|| cos,|.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了減輕家庭困難的高中學(xué)生的經(jīng)濟(jì)負(fù)擔(dān),讓更多的孩子接受良好的教育,國(guó)家施行高中生國(guó)家助學(xué)金政策,普通高中國(guó)家助學(xué)金平均資助標(biāo)準(zhǔn)為每生每年1500元,具體標(biāo)準(zhǔn)由各地結(jié)合實(shí)際在1000元至3000元范圍內(nèi)確定,可以分為兩或三檔.各學(xué)校積極響應(yīng)政府號(hào)召,通過(guò)各種形式宣傳國(guó)家助學(xué)金政策.為了解某高中學(xué)校對(duì)國(guó)家助學(xué)金政策的宣傳情況,擬采用隨機(jī)抽樣的方法抽取部分學(xué)生進(jìn)行采訪調(diào)查.

1)若該高中學(xué)校有2000名在校學(xué)生,編號(hào)分別為0001,0002,0003,2000,請(qǐng)用系統(tǒng)抽樣的方法,設(shè)計(jì)一個(gè)從這2000名學(xué)生中抽取50名學(xué)生的方案.(寫(xiě)出必要的步驟)

2)該校根據(jù)助學(xué)金政策將助學(xué)金分為3檔,1檔每年3000元,2檔每年2000元,3檔每年1000元,某班級(jí)共評(píng)定出3個(gè)1檔,2個(gè)2檔,1個(gè)3檔,若從該班獲得助學(xué)金的學(xué)生中選出2名寫(xiě)感想,求這2名同學(xué)不在同一檔的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐的棱長(zhǎng)均為6,其內(nèi)有個(gè)小球,球與三棱錐的四個(gè)面都相切,球與三棱錐的三個(gè)面和球都相切,如此類(lèi)推,,球與三棱錐的三個(gè)面和球都相切(,且),則球的體積等于__________,球的表面積等于__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行六面體ABCDA1B1C1D1中,AA1⊥平面ABCD,且ABAD=2,AA1,∠BAD=120°.

(1)求異面直線A1BAC1所成角的余弦值;

(2)求二面角BA1DA的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱長(zhǎng)為3的正方體ABCDA1B1C1D1中,A1ECF1.

1)求異面直線AC1D1E所成角的余弦值;

2)求直線AC1與平面BED1F所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,∠ABC=∠BAD90°,ADAP4ABBC2,MPC的中點(diǎn).

1)求異面直線AP,BM所成角的余弦值;

2)點(diǎn)N在線段AD上,且ANλ,若直線MN與平面PBC所成角的正弦值為,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足

1)當(dāng)時(shí),寫(xiě)出所有可能的值;

2)當(dāng)時(shí),若對(duì)任意恒成立,求數(shù)列的通項(xiàng)公式;

3)記數(shù)列的前項(xiàng)和為,若分別構(gòu)成等差數(shù)列,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C)的兩焦點(diǎn)與短軸兩端點(diǎn)圍成面積為12的正方形.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)我們稱圓心在橢圓上運(yùn)動(dòng),半徑為的圓是橢圓的“衛(wèi)星圓”.過(guò)原點(diǎn)O作橢圓C的“衛(wèi)星圓”的兩條切線,分別交橢圓CA、B兩點(diǎn),若直線、的斜率為,當(dāng)時(shí),求此時(shí)“衛(wèi)星圓”的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】11”促銷(xiāo)活動(dòng)中,某商場(chǎng)為了吸引顧客,搞好促銷(xiāo)活動(dòng),采用雙色球定折扣的方式促銷(xiāo),即:在紅、黃的兩個(gè)紙箱中分別裝有大小完全相同的紅、黃球各5個(gè),每種顏色的5個(gè)球上標(biāo)有1,23,455個(gè)數(shù)字,顧客結(jié)賬時(shí),先分別從紅、黃的兩個(gè)紙箱中各取一球,按兩個(gè)球的數(shù)字之和為折扣打折,如,就按3折付款,并規(guī)定取球后不再增加商品.按此規(guī)定,顧客享有6折及以下折扣的概率是( 。

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案